Skip to main content

Advertisement

Log in

Pressor response to l-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The sulfur-containing non-essential amino acid l-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to l-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected d-cysteine produced no cardiovascular changes, while l-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of l-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of l-cysteine-injected rats than those injected with d-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of l-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of l-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andresen MC, Paton JFR (2011) The nucleus of the solitary tract: processing information from viscerosensory afferents. In: Llewellyn-Smith IJ, Verberne AJM (eds) Central regulation of autonomic functions, 2nd edn. Oxford, New York, pp 23–46

    Chapter  Google Scholar 

  • Armstrong WE (2004) Chapter 15: Hypothalamic supraoptic and paraventricular nuclei. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, New York, pp 369–388

    Google Scholar 

  • Buller KM, Smith DW, Day TA (1999) Differential recruitment of hypothalamic neuroendocrine and ventrolateral medulla catecholamine cells by non-hypotensive and hypotensive hemorrhages. Brain Res 834:42–54

    Article  PubMed  CAS  Google Scholar 

  • Chan RKW, Peto CA, Sawchenko PE (1995) A1 catecholamine cell group: fine structure and synaptic input from the nucleus of the solitary tract. J Comp Neurol 351:62–80

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL (1997) Glutathione in the brain: disorders of glutathione metabolism. In: Rosenberg RN, Prusiner SB, Dimauro S, Barchi RL, Kunk LM (eds) The molecular and genetic basis of neurological disease. Butterworth-Heinemann, Boston, pp 1195–1230

    Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1988) Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274:60–76

    Article  PubMed  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1991) Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci 14:406–411

    Article  PubMed  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  PubMed  CAS  Google Scholar 

  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic–neurohypophysial system regulates the hypothalamic–pituitary–adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25:132–149

    Article  PubMed  CAS  Google Scholar 

  • Godino A, Giusti-Paiva A, Antunes-Rodrigues J, Vivas L (2005) Neurochemical brain groups activated after an isotonic blood volume expansion in rats. Neuroscience 133:493–505

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1987) Mammalian sulfur amino acid metabolism: an overview. Methods Enzymol 143:366–376

    Article  PubMed  CAS  Google Scholar 

  • Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  PubMed  CAS  Google Scholar 

  • Janáky R, Varga V, Hermann A, Saransaari P, Oja SS (2000) Mechanisms of l-cysteine neurotoxicity. Neurochem Res 25:1397–1405

    Article  PubMed  Google Scholar 

  • Keller HJ, Do KQ, Zollinger M, Winterhalter KH, Cuénod M (1989) Cysteine: depolarization-induced release from rat brain in vitro. J Neurochem 52:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Zorumski C, Price MT, Labruyere J (1990) l-Cysteine, a bicarbonate-sensitive endogenous excitotoxin. Science 248:596–599

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS, Watson C (1999a) Chemoarchitectonic atlas of the rat forebrain. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Carrive P, Wang H, Wang P-Y (1999b) Chemoarchitectonic atlas of the rat brainstem. Academic Press, San Diego

    Google Scholar 

  • Qu K, Lee SW, Bian JS, Low C-M, Wong PT-H (2008) Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int 52:155–165

    Article  PubMed  CAS  Google Scholar 

  • Rinaman L (2007) Visceral sensory inputs to the endocrine hypothalamus. Front Neuroendocrinol 28:50–60

    Article  PubMed  CAS  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Sawamoto O, Hagiwara R, Kurisu K (2004) l-Cysteine-induced brain damage in adult rats. Exp Toxicol Pathol 56:45–52

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1990) Amino acids with central pressor effect in conscious rats. Jpn J Physiol 40:561–565

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1991) An improved method for using cisternal cerebrospinal fluid in conscious rats for application in the measurement of catecholamines. Jpn J Physiol 41:665–669

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1992a) Decreases in catecholamine concentrations of cisternal cerebrospinal fluid and plasma in rats by pentobarbital anesthesia. Jpn J Physiol 42:141–145

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1992b) Cardiovascular effects of centrally injected amino acids in conscious rats. In: Takaki K (ed) Frontiers and new horizons in amino acid research. Elsevier, Amsterdam, pp 285–289

    Google Scholar 

  • Takemoto Y (1993) Regional vasoconstriction and excessive grooming induced by l-arginine injection into the cisterna magna of conscious rats. Jpn J Physiol 43:389–402

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1995a) The central effect of l-cysteine on cardiovascular system of the conscious rat. Jpn J Physiol 45:771–783

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1995b) Regional hemodynamic changes and vasopressin release induced by intracisternal injection of l-proline in the conscious rat. Jpn J Physiol 45:743–758

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1995c) Hindquarter vasodilation after intracisternal injection of d-arginine in the conscious rat. Jpn J Physiol 45:759–769

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (1999) Kynurenic acid inhibits circulatory responses to intracisternally injected l-proline in conscious rats. Neurosci Lett 261:121–123

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (2003) Hindquarters vasoconstriction through central GABAb receptors in conscious rats. Exp Physiol 88:491–496

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y (2011) Intracisternal injection of l-proline activates hypothalamic supraoptic, but not paraventricular, vasopressin-expressing neurons in conscious rats. J Amino Acids. doi:10.4061/2011/230613

    PubMed  Google Scholar 

  • Takemoto Y (2012) Amino acids that centrally influence blood pressure and regional blood flow regulation in conscious rats. J Amino Acids. doi:10.1155/2012/831759

    PubMed  Google Scholar 

  • Takemoto Y, Kan K (2000) Are cardiovascular actions of l-cysteine on the nucleus tractus solitarii through its possible enzymatic product l-cysteine sulphinic acid? Program No. 444.8. Neuroscience Meeting Planner (Online). Abstract: Society for Neuroscience 30th Annual Meeting, New Orleans, Nov. 6

  • Thompson GA, Kilpatrick IC (1996) The neurotransmitter candidature of sulphur-containing excitatory amino acids in the mammalian central nervous system. Pharmacol Ther 72:25–36

    Article  PubMed  CAS  Google Scholar 

  • Zängerle L, Cuénod M, Winterhalter KH, Do KQ (1992) Screening of thiol compounds: depolarization-induced release of glutathione and cysteine from rat brain slices. J Neurochem 59:181–189

    Article  PubMed  Google Scholar 

  • Zhang Y, Hogg N (2005) S-Nitrosothiols: cellular formation and transport. Free Radic Bio Med 38:831–838

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The author declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Takemoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemoto, Y. Pressor response to l-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons. Amino Acids 44, 1053–1060 (2013). https://doi.org/10.1007/s00726-012-1440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1440-6

Keywords

Navigation