Skip to main content

Advertisement

Log in

Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The impact of inserting hydrocarbon staples into short α-helical antimicrobial peptides lasioglossin III and melectin (antimicrobial peptides of wild bee venom) on their biological and biophysical properties has been examined. The stapling was achieved by ring-closing olefin metathesis, either between two S-2-(4′-pentenyl) alanine residues (S 5) incorporated at i and i + 4 positions or between R-2-(7′-octenyl) alanine (R 8) and S 5 incorporated at the i and i + 7 positions, respectively. We prepared several lasioglossin III and melectin analogs with a single staple inserted into different positions within the peptide chains as well as analogs with double staples. The stapled peptides exhibited a remarkable increase in hemolytic activity, while their antimicrobial activities decreased. Some single stapled peptides showed a higher resistance against proteolytic degradation than native ones, while the double stapled analogs were substantially more resistant. The CD spectra of the singly stapled peptides measured in water showed only a slightly better propensity to form α-helical structure when compared to native peptides, whereas the doubly stapled analogs exhibited dramatically enhanced α-helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechnol 12:1184–1193

    Article  PubMed  CAS  Google Scholar 

  • Backlund B-M, Wikander G, Peeters T, Graslund A (1994) Induction of secondary structure in the peptide hormone motilin by interaction with phospholipid vesicles. Biochim Biophys Acta 1190:337–344

    Article  PubMed  CAS  Google Scholar 

  • Baltzer SA, Brown MH (2011) Antimicrobial peptides—promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235

    Article  PubMed  CAS  Google Scholar 

  • Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129:2456–2457

    Article  PubMed  CAS  Google Scholar 

  • Bird GH, Madani N, Perry AF, Princiotto AM, Supko JG, He X, Gavathiotis E, Sodroski JG, Walensky LD (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci USA 107:14093–14098

    Article  PubMed  CAS  Google Scholar 

  • Blackwell HE, Grubbs RH (1998) Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Ed 37:3281–3284

    Article  CAS  Google Scholar 

  • Blackwell HE, Sadowsky JD, Howard RJ, Sampson JN, Chao JA, Steinmetz WE, O’Leary DJ, Grubbs RH (2001) Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Org Chem 66:5291–5302

    Article  PubMed  CAS  Google Scholar 

  • Blattacharia S, Zhang H, Debnath AK, Cowburn D (2008) Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 283:16274–16278

    Article  Google Scholar 

  • Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednárová L, Borovičková L, Slaninová J, Fučík V (2008) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chem Biochem 9:2815–2821

    Google Scholar 

  • Čeřovský V, Buděšínský M, Hovorka O, Cvačka J, Voburka Z, Slaninová J, Borovičková L, Fučík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera:Halictidae). ChemBioChem 10:2089–2099

    Article  PubMed  Google Scholar 

  • Chen Y, Man CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial targets. J Pept Sci 17:298–305

    Article  PubMed  CAS  Google Scholar 

  • Estieu-Gionnet K, Guichard G (2011) Stabilized helical peptides: overview of the technologies and therapeutic promises. Expert Opin Drug Disc 6:937–963

    Article  CAS  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116

    Article  PubMed  CAS  Google Scholar 

  • Henchey LK, Jochim AL, Arora PS (2008) Contemporary strategies for the stabilization of peptides in the α-helical conformation. Curr Opin Chem Biol 12:692–697

    Article  PubMed  CAS  Google Scholar 

  • Hong SY, Oh JE, Lee K-H (1999) Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharm 58:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Guilhaudis L, Sonnevend A, Attoub S, van Lierop BJ, Robinson AJ, Wade JD, Conlon JM (2011) Synthesis, conformational analysis and biological properties of dicarba derivative of the antimicrobial peptide, brevinin-1BYa. Eur Biophys J 40:555–564

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152

    Google Scholar 

  • Kim Y-W, Verdine GL (2009) Stereochemical effects of all-hydrocarbon tethers in i, i + 4 stapled peptides. Bioorg Med Chem Lett 19:2533–2536

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-W, Kutchukian PS, Verdine GL (2010) Introduction of all-hydrocarbon tethers in i, i + 3 staples into α-helices via ring-closing olefin metathesis. Org Lett 12:3046–3049

    Article  PubMed  CAS  Google Scholar 

  • Kurth T, Ullmann D, Jakubke H-D, Hedstrom L (1997) Converting trypsin to chymotrypsin: structural determinants of S1′ specificity. Biochemistry 36:10098–10104

    Article  PubMed  CAS  Google Scholar 

  • Kutchukian PS, Yang JS, Verdine GL, Shakhnovich EI (2009) All-atom model for stabilization of α-helical structure in peptides by hydrocarbon staples. J Am Chem Soc 131:4622–4627

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee DG (2008) Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp Mol Med 40:370–376

    Article  PubMed  CAS  Google Scholar 

  • Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188

    Article  PubMed  CAS  Google Scholar 

  • Monincová L, Buděšínský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera:Halictidae) and their analogs. Amino Acids 39:763–775

    Article  PubMed  Google Scholar 

  • Monroc S, Badosa E, Feliu L, Planas M, Montesinos E, Bardají E (2006) De novo designed of cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27:2567–2574

    Article  PubMed  CAS  Google Scholar 

  • Oyston PCF, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microb 58:977–987

    Article  CAS  Google Scholar 

  • Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl H-G (2004) In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J Antimicrob Chemother 53:230–239

    Article  PubMed  CAS  Google Scholar 

  • Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol 295:1–26

    Article  PubMed  CAS  Google Scholar 

  • Schafmeister CE, Po J, Verdine GK (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122:5891–5892

    Article  CAS  Google Scholar 

  • Slaninová J, Putnová H, Borovičková L, Šácha P, Čeřovský V, Monincová L, Fučík V (2011) The antifungal effect of peptides from hymenoptera venom and their analogs. Cent Eur J Biol 6:150–159

    Article  Google Scholar 

  • Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L, Borovičková L, Fučík V, Čeřovský V (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33:18–26

    Article  PubMed  Google Scholar 

  • Stewart ML, Fire E, Keating AE, Walensky LD (2010) The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 6:595–601

    Article  PubMed  CAS  Google Scholar 

  • Sviridov DO, Ikpot IZ, Stonik J, Drake SK, Amar M, Osei-Hwedieh DO, Piszczek G, Turner S, Remaley AT (2011) Helix stabilization of amphipathic peptides by hydrocarbon stapling increases cholesterol efflux by the ABCA1 transporter. Biochem Biophys Res Commun 410:446–451

    Article  PubMed  CAS  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers (Peptide Science) 80:717–735

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science) 55:4–30

    Article  CAS  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  PubMed  CAS  Google Scholar 

  • Wilder PT, Charpentier TH, Weber DJ (2007) Hydrocarbon-stapled helices: a novel approach for blocking protein–protein interactions. Chem Med Chem 2:1149–1151

    PubMed  CAS  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membrane Biol 239:27–34

    Article  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 55:27–55

    Article  PubMed  CAS  Google Scholar 

  • Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  PubMed  CAS  Google Scholar 

  • Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, Grant No. 203/08/0536 and by Research Project No. Z40550506 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. We also thank Professor V.O. Kostroun, Cornell University, Ithaca, NY, for assistance with the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Čeřovský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1586 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, H., Slaninová, J., Bednárová, L. et al. Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera. Amino Acids 43, 2047–2058 (2012). https://doi.org/10.1007/s00726-012-1283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1283-1

Keywords

Navigation