Skip to main content
Log in

Investigation of the Role of Hydrophobic Amino Acids on the Structure–Activity Relationship in the Antimicrobial Venom Peptide Ponericin L1

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Venom mixtures from insects, reptiles, and mollusks have long been a source of bioactive peptides which often have alternative uses as therapeutics. While these molecules act in numerous capacities, there have been many venom components that act on the target cells through membrane disruptive mechanisms. These peptides have long been of interest as potential antimicrobial peptide platforms, but the inherent cytotoxicity of venom peptides often results in poor therapeutic potential. Despite this, efforts are ongoing to identify and characterize venom peptide which exhibit high antimicrobial activity with low cytotoxicity and modify these to further enhance the efficacy while reducing toxicity. One example is ponericin L1 from Neoponera goeldii which has been demonstrated to have good antimicrobial activity and low in vitro cytotoxicity. The L1 sequence was modified by uniformly replacing the native hydrophobic residues with either Leu, Ile, Phe, Ala, or Val. Spectroscopic and microbiological approaches were employed to investigate how the amino acid sequence changes impacted membrane interaction, secondary structure, and antimicrobial efficacy. The L1 derivatives showed varying degrees of bilayer interaction, in some cases driven by bilayer composition. Several of the variants exhibited enhanced antimicrobial activity compared to the parent strain, while others lost all activity. Interestingly, the variant containing Val lost all antimicrobial activity and ability to interact with bilayers. Taken together the results indicate that peptide secondary structure, amino acid composition, and hydrophobicity all play a role in peptide activity, although this is a delicate balance that can result in non-specific binding or complete loss of activity if specific amino acids are incorporated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, Nicholson GM (2014) Diversity of peptide toxins from stinging ant venoms. Toxicon 92:166–178

    Article  CAS  PubMed  Google Scholar 

  • Arenas I, Villegas E, Walls O, Barrios H, Rodríguez R, Corzo G (2016) Antimicrobial activity and stability of short and long based arachnid synthetic peptides in the presence of commercial antibiotics. Molecules 21

  • Buccini DF, Cardoso MH, Franco OL (2021) Antimicrobial peptides and cell-penetrating peptides for treating intracellular bacterial infections. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.612931

    Article  PubMed  PubMed Central  Google Scholar 

  • Burman LG, Nordstrom K, Boman HG (1968) Resistance of Escherichia coli to penicillins. V. Physiological comparison of two isogenic strains, one with chromosomally and one with episomally mediated ampicillin resistance. J Bacteriol 96:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo GA, London E (2019) Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. Methods Mol Biol 2003:351–368

    Article  CAS  PubMed  Google Scholar 

  • CDC (2019) Antibiotic resistance threats in the United States, 2019. U.S. Department of Health and Human Services, CDC

  • Chrom CL, Renn LM, Caputo GA (2019) Characterization and antimicrobial activity of amphiphilic peptide AP3 and derivative sequences. Antibiotics 8

  • Dong N, Ma Q, Shan A, Lv Y, Hu W, Gu Y, Li Y (2012) Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich beta-hairpin-like antimicrobial peptides. Antimicrob Agents Chemother 56:2994–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MAT, Cooper MA (2016) Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis 2:442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flockton TR, Schnorbus L, Araujo A, Adams J, Hammel M, Perez LJ (2019) Inhibition of pseudomonas aeruginosa biofilm formation with surface modified polymeric nanoparticles. Pathogens 8:55

    Article  CAS  PubMed Central  Google Scholar 

  • Foster LL, Yusa S-i, Kuroda K (2019) Solution-mediated modulation of pseudomonas aeruginosa biofilm formation by a cationic synthetic polymer. Antibiotics 8:61

    Article  CAS  PubMed Central  Google Scholar 

  • Goderecci SS, Kaiser E, Yanakas M, Norris Z, Scaturro J, Oszust R, Medina CD, Waechter F, Heon M, Krchnavek RR, Yu L, Lofland SE, Demarest RM, Caputo GA, Hettinger JD (2017) Silver oxide coatings with high silver-ion elution rates and characterization of bactericidal activity. Molecules 22

  • Gottler LM, de la Salud Bea R, Shelburne CE, Ramamoorthy A, Marsh ENG (2008) Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the β-hairpin antimicrobial peptide protegrin-1. Biochemistry 47:9243–9250

    Article  CAS  PubMed  Google Scholar 

  • Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL, Håkansson J, Hansen PR, Svenson J (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10:13206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldar S, Raghuraman H, Chattopadhyay A (2008) Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J Phys Chem B 112:14075–14082

    Article  CAS  PubMed  Google Scholar 

  • Hitchner MA, Necelis MR, Shirley D, Caputo GA (2021) Effect of non-natural hydrophobic amino acids on the efficacy and properties of the antimicrobial peptide C18G. Probiotics Antimicrob Proteins 13:527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA (2019) Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr

  • Johnson SR, Copello JA, Evans MS, Suarez AV (2010) A biochemical characterization of the major peptides from the Venom of the giant Neotropical hunting ant Dinoponera australis. Toxicon 55:702–710

    Article  CAS  PubMed  Google Scholar 

  • Kraus D (2014) Consolidated data analysis and presentation using an open-source add-in for the Microsoft Excel® spreadsheet software. Med Writ 23:25–28

    Article  Google Scholar 

  • Kuroda K, Caputo GA, DeGrado WF (2009) The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry 15:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS, Selsted ME, White SH (1997) Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J 72:794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepore C, Silver L, Theuretzbacher U, Thomas J, Visi D (2019) The small-molecule antibiotics pipeline: 2014–2018. Nat Rev Drug Discov 18:739

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Makhlynets OV, Caputo GA (2021) Characteristics and therapeutic applications of antimicrobial peptides. Biophys Rev 2:011301

    Article  CAS  Google Scholar 

  • Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P (2021) Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788:1687–1692

    Article  CAS  Google Scholar 

  • Mohamed MF, Abdelkhalek A, Seleem MN (2016) Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 6:29707

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortazavian H, Foster LL, Bhat R, Patel S, Kuroda K (2018) Decoupling the functional roles of cationic and hydrophobic groups in the antimicrobial and hemolytic activities of methacrylate random copolymers. Biomacromol 19:4370–4378

    Article  CAS  Google Scholar 

  • Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646

    Article  Google Scholar 

  • Nick Pace C, Martin Scholtz J (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  Google Scholar 

  • World Health Organization (2018) Monitoring global progress on addressing antimicrobial resistance (AMR), (ed)^(eds)

  • Orivel J, Redeker V, Le Caer JP, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Dejean A, Rossier J (2001) Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 276:17823–17829

    Article  CAS  PubMed  Google Scholar 

  • Palermo EF, Kuroda K (2009) Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromol 10:1416–1428

    Article  CAS  Google Scholar 

  • Palermo EF, Kuroda K (2010) Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol 87:1605–1615

    Article  CAS  PubMed  Google Scholar 

  • Palermo EF, Lienkamp K, Gillies ER, Ragogna PJ (2019) Antibacterial activity of polymers: discussions on the nature of amphiphilic balance. Angew Chem Int Ed 58:3690–3693

    Article  CAS  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2006) Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 83:111–121

    Article  CAS  PubMed  Google Scholar 

  • Rani G, Kuroda K, Vemparala S (2020) Aggregation of methacrylate-based ternary biomimetic antimicrobial polymers in solution. J Phys 33:064003

    Google Scholar 

  • Saint Jean KD, Henderson KD, Chrom CL, Abiuso LE, Renn LM, Caputo GA (2018) Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics Antimicrob Proteins 10:408–419

    Article  CAS  PubMed  Google Scholar 

  • Savinov SN, Heuck AP (2017) Interaction of cholesterol with perfringolysin O: what have we learned from functional analysis? Toxins 9

  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE, Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother 61:e00954-e1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senetra AS, Necelis MR, Caputo GA (2020) Investigation of the structure-activity relationship in ponericin L1 from Neoponera goeldii. Pept Sci 112:e24162

    Article  CAS  Google Scholar 

  • Snider C, Jayasinghe S, Hristova K, White SH (2009) MPEx: a tool for exploring membrane proteins. Protein Sci 18:2624–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sovadinova I, Palermo EF, Huang R, Thoma LM, Kuroda K (2011) Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis. Biomacromol 12:260–268

    Article  CAS  Google Scholar 

  • Tang J, Signarvic RS, DeGrado WF, Gai F (2007) Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers. Biochemistry 46:13856–13863

    Article  CAS  PubMed  Google Scholar 

  • Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangoni ML, Khosravi-Far R, Bobone S, Stella L (2020) Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: the case of killerFLIP. Biochimica et Biophysica Acta (BBA) - Biomembranes 1862:183107

    Article  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapadka KL, Becher FJ, Santos ALGd, Jackson SE (2017) Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 7:20170030

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Rowan University Pharmaceutical Sciences program for support of NPS. The authors would like to thank Mikhail Anikin at Rowan University School of Osteopathic Medicine for assistance with MALDI mass spectrometry.

Funding

This work was funded in part by the National Institutes of Health Grant NIH R15 GM094330.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by GAC. Experiments were performed by NPS. Data analysis and manuscript preparation was carried out by GAC and NPS.

Corresponding author

Correspondence to Gregory A. Caputo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2001 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schifano, N.P., Caputo, G.A. Investigation of the Role of Hydrophobic Amino Acids on the Structure–Activity Relationship in the Antimicrobial Venom Peptide Ponericin L1. J Membrane Biol 255, 537–551 (2022). https://doi.org/10.1007/s00232-021-00204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00204-y

Keywords

Navigation