Skip to main content
Log in

Predicting protein submitochondria locations by combining different descriptors into the general form of Chou’s pseudo amino acid composition

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Knowledge of the submitochondria location of protein is integral to understanding its function and a necessity in the proteomics era. In this work, a new submitochondria data set is constructed, and an approach for predicting protein submitochondria locations is proposed by combining the amino acid composition, dipeptide composition, reduced physicochemical properties, gene ontology, evolutionary information, and pseudo-average chemical shift. The overall prediction accuracy is 93.57% for the submitochondria location and 97.79% for the three membrane protein types in the mitochondria inner membrane using the algorithm of the increment of diversity combined with the support vector machine. The performance of the pseudo-average chemical shift is excellent. For contrast, the method is also used to predict submitochondria locations in the data set constructed by Du and Li; an accuracy of 94.95% is obtained by our method, which is better than that of other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  • Andrade MA, O’Donoghue SI, Rost B (1998) Adaption of protein surface to subcellular location. J Mol Biol 276:517–525

    Google Scholar 

  • Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Bhasin M, Raghava GP (2004) ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acids Res 32:W414–W419 (Web Server issue)

    Article  PubMed  CAS  Google Scholar 

  • Bi J, Yang H, Yan H, Song R, Fan J (2011) Knowledge-based virtual screening of HLA-A*0201-restricted CD8(+) T-cell epitope peptides from herpes simplex virus genome. J Theor Biol 281:133–139

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2000) Using neural networks for prediction of subcellular location of prokaryotic and eukaryotic proteins. Mol Cell Biol Res Commun 4:172–173

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2003) Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochem Biophys Res Commun 305:407–411

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ et al (2000) Support vector machines for prediction of protein subcellular location. Mol Cell Biol Res Commun 4:230–233

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ et al (2002a) Support vector machines for the classification and prediction of β-turn types. J Pept Sci 8:297–301

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ, Xu XB, Chou KC (2002b) Support vector machines for predicting HIV protease cleavage sites in protein. J Comput Chem 23:267–274

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ, Xu XB, Chou KC (2002c) Support vector machines for predicting the specificity of GalNAc-transferase. Peptides 23:205–208

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ et al (2002d) Prediction of protein structural classes by support vector machines. Comput Chem 26:293–296

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Lin S, Chou KC (2003a) Support vector machines for prediction of protein signal sequences and their cleavage sites. Peptides 24:159–161

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Zhou GP, Chou KC (2003b) Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84:3257–3263

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Feng KY, Li YX, Chou KC (2003c) Support vector machine for predicting α-turn types. Peptides 24:629–630

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Zhou GP, Jen CH, Lin SL, Chou KC (2004a) Identify catalytic triads of serine hydrolases by support vector machines. J Theor Biol 228:551–557

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Pong-Wong R, Feng K, Jen JCH, Chou KC (2004b) Application of SVM to predict membrane protein types. J Theor Biol 226:373–376

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Ricardo PW et al (2004c) Application of SVM to predict membrane protein types. J Theor Biol 226:373–376

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Lu L et al (2010) Predicting subcellular location of proteins using integrated-algorithm method. Mol Divers 14:551–558

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Transact Intell Syst Technol 2:27:1–27:27. doi: 10.1145/1961189.1961199. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  • Chen YL, Li QZ (2007a) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. J Theor Biol 248:377–381

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein Pept Lett 16:27–31

    Article  PubMed  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43:246–255

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2009) Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics 6:262–274

    Article  CAS  Google Scholar 

  • Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273:236–247

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277:45765–45769

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2003) A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology. Biochem Biophys Res Commun 311:743–747

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2004) Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun 320:1236–1239

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2005) Using GO-PseAA predictor to identify membrane proteins and their types. Biochem Biophys Res Commun 327:845–847

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006a) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J Proteome Res 5:1888–1897

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006b) Predicting protein subcellular location by fusing multiple classifiers. J Cell Biochem 99:517–527

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007) Recent progress in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2009) Review: recent advances in developing web-servers for predicting protein attributes. Nat Sci 2:63–92 (openly accessible at http://www.scirp.org/journal/NS/)

    Google Scholar 

  • Chou KC, Shen HB (2010a) Cell-PLoc2.: a improved package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Sci 2:1090–1103

    CAS  Google Scholar 

  • Chou KC, Shen HB (2010b) A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One 5:e9931

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2010c) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Wu ZC, Xiao X (2011) iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One 6:e18258 (50th Anniversary Year Review)

    Article  PubMed  CAS  Google Scholar 

  • Cotter D, Guda P et al (2004) MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res 32:D463–D467 (Database issue)

    Article  PubMed  CAS  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept Lett 14:811–815

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Luo L, Lin H (2009) Prediction of cell wall lytic enzymes using Chou’s amphiphilic pseudo amino acid composition. Protein Pept Lett 16:351–355

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Liu L, Guo FB, Huang J, Lin H (2011) Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition. Protein Pept Lett 18:58–63

    Article  PubMed  CAS  Google Scholar 

  • Du P, Li YD (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinforma 7:518–525

    Article  CAS  Google Scholar 

  • Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol 263:203–209

    Article  PubMed  CAS  Google Scholar 

  • Feng ZP (2002) An overview on predicting the subcellular location of a protein. In Silico Biol 2:291–303

    PubMed  CAS  Google Scholar 

  • Fyshe A, Liu Y et al (2008) Improving subcellular localization prediction using text classification and the gene ontology. Bioinformatics 24:2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Gao QB, Ye XF et al (2010) Improving discrimination of outer membrane proteins by fusing different forms of pseudo amino acid composition. Anal Biochem 398:52–59

    Article  PubMed  CAS  Google Scholar 

  • Georgiou DN, Karakasidis TE, Nieto JJ, Torres A (2009) Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition. J Theor Biol 257:17–26

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb RA (2000) Programmed cell death. Drug News Perspect 13:471–476

    PubMed  CAS  Google Scholar 

  • Gu Q, Ding YS, Zhang TL (2010a) Prediction of G-protein-coupled receptor classes in low homology using chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Protein Pept Lett 17:559–567

    Article  PubMed  CAS  Google Scholar 

  • Gu Q, Ding YS et al (2010b) Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection. Amino Acids 38:975–983

    Article  PubMed  CAS  Google Scholar 

  • Hayat M, Khan A (2011) Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J Theor Biol 271:10–17

    Article  CAS  Google Scholar 

  • Hu L, Zheng L, Wang Z, Li B, Liu L (2011) Using pseudo amino acid composition to predict protease families by incorporating a series of protein biological features. Protein Pept Lett 18:552–558

    PubMed  CAS  Google Scholar 

  • Huang WL, Tung CW et al (2008) ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinforma 9:80

    Article  CAS  Google Scholar 

  • Jassem W, Heaton ND (2004) The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int 66:514–517

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wei R, Zhang TL, Gu Q (2008a) Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein Pept Lett 15:392–396

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wei R et al (2008b) Using Chou’s pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location. Amino Acids 34:669–675

    Article  PubMed  CAS  Google Scholar 

  • Joshi RR, Sekharan S (2010) Characteristic peptides of protein secondary structural motifs. Protein Pept Lett 17:1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Kandaswamy KK, Pugalenthi G, Moller S, Hartmann E, Kalies KU, Suganthan PN, Martinetz T (2010) Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition. Protein Pept Lett 17:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Kandaswamy KK, Chou KC, Martinetz T, Moller S, Suganthan PN, Sridharan S, Pugalenthi G (2011) AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol 270:56–62

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Chuang HY et al (2008) Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species. Nucleic Acids Res 36:e136

    Article  PubMed  CAS  Google Scholar 

  • Li FM, Li QZ (2008a) Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein Pept Lett 15:612–616

    Article  PubMed  Google Scholar 

  • Li FM, Li QZ (2008b) Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids 34:119–125

    Article  PubMed  CAS  Google Scholar 

  • Li QZ, Lu ZQ (2001) The prediction of the structural class of protein: application of the measure of diversity. J Theor Biol 213:493–502

    Article  PubMed  CAS  Google Scholar 

  • Li W, Jaroszewski L et al (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Ding H (2011) Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269:64–69

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Ding H et al (2008) Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition. Protein Pept Lett 15:739–744

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Zheng X, Wang C, Wang J (2010) Prediction of subcellular location of apoptosis proteins using pseudo amino acid composition: an approach from auto covariance transformation. Protein Pept Lett 17:1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Luginbuhl P, Szyperski T, Wuthrich K (1995) Statistical basis for the use of 13C a chemical shifts in protein structure determination. J Magn Reson B 109:229–233

    Article  Google Scholar 

  • Matsuda S, Vert JP et al (2005) A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci 14:2804–2813

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    Article  PubMed  CAS  Google Scholar 

  • Mielke SP, Krishnan VV (2003) Protein structural class identification directly from NMR spectra using averaged chemical shifts. Bioinformatics 19:2054–2064

    Article  PubMed  CAS  Google Scholar 

  • Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Pept Lett 17:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Mohabatkar H, Beigi MM, Esmaeili A (2011) Prediction of GABA (A) receptor proteins using the concept of Chou’s pseudo-amino acid composition and support vector machine. J Theor Biol 281:18–23

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Rost B (2003) Better prediction of sub-cellular localization by combining evolutionary and structural information. Proteins 53:917–930

    Article  PubMed  CAS  Google Scholar 

  • Nanni L, Lumini A (2008) Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids 34:653–660

    Article  PubMed  CAS  Google Scholar 

  • Nanni L, Brahnam S, Lumini A (2010) High performance set of PseAAC and sequence based descriptors for protein classification. J Theor Biol 266:1–10

    Article  PubMed  CAS  Google Scholar 

  • Park KJ, Kanehisa M (2003) Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19:1656–1663

    Article  PubMed  CAS  Google Scholar 

  • Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    Article  PubMed  CAS  Google Scholar 

  • Pollastri G, Martin AJ et al (2007) Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinforma 8:201

    Article  CAS  Google Scholar 

  • Qiu JD, Huang JH, Shi SP, Liang RP (2010) Using the concept of Chou’s pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform. Protein Pept Lett 17:715–722

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res 26:2230–2236

    Article  PubMed  CAS  Google Scholar 

  • Schaffer AA, Aravind L et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  PubMed  CAS  Google Scholar 

  • Scharfe C, Zaccaria P et al (2000) MITOP, the mitochondrial proteome database: 2000 update. Nucleic Acids Res 28:155–158

    Article  PubMed  CAS  Google Scholar 

  • Seavey BR, Farr EA et al (1991) A relational database for sequence-specific protein NMR data. J Biomol NMR 1:217–236

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW et al (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    Article  PubMed  CAS  Google Scholar 

  • Sibley AB, Cosman M, Krishnan VV (2003) An empirical correlation between secondary structure content and averaged chemical shifts in proteins. Biophys J 84(2):1223–1227

    Article  PubMed  CAS  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C a and C β 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  CAS  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Wang W, Geng XB et al (2011) Predicting protein subcellular localization by pseudo amino acid composition with a segment-weighted and features-combined approach. Protein Pept Lett (e-pub ahead of print)

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Apweiler R et al (2006) The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191 (Database issue)

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Wu ZC, Chou KC (2011a) A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One 6:e20592

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Wu ZC, Chou KC (2011b) iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol 284:42–51

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Guo Y, Li Y, Li G, Li M, Luo J, Xiong W, Qin W (2010) SecretP: identifying bacterial secreted proteins by fusing new features into Chou’s pseudo-amino acid composition. J Theor Biol 267:1–6

    Article  PubMed  CAS  Google Scholar 

  • Zakeri P, Moshiri B, Sadeghi M (2011) Prediction of protein submitochondria locations based on data fusion of various features of sequences. J Theor Biol 269:208–216

    Article  PubMed  CAS  Google Scholar 

  • Zeng YH, Guo YZ et al (2009) Using the augmented Chou’s pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach. J Theor Biol 259:366–372

    Article  PubMed  CAS  Google Scholar 

  • Zhang GY, Fang BS (2008) Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo-amino acid composition. J Theor Biol 253:310–315

    Article  PubMed  CAS  Google Scholar 

  • Zhang GY, Li HC et al (2008) Predicting lipase types by improved Chou’s pseudo-amino acid composition. Protein Pept Lett 15:1132–1137

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Alipanahi B et al (2010) Protein secondary structure prediction using NMR chemical shift data. J Bioinform Comput Biol 8:867–884

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins 44:57–59

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Chen C et al (2007) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their helpful comments on our manuscript. This work was supported by a grant from the National Natural Science Foundation of China (61063016, 31160188), The Research Fund for the Doctoral Program of Higher Education of China (no.20101501110004), The Project for ‘211’ Innovative Talents of Inner Mongolia University (no. 2-1.2.1_035), and the Inner Mongolia University Fund for Young Scholars (no. 208152).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, GL., Li, QZ. Predicting protein submitochondria locations by combining different descriptors into the general form of Chou’s pseudo amino acid composition. Amino Acids 43, 545–555 (2012). https://doi.org/10.1007/s00726-011-1143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1143-4

Keywords

Navigation