Skip to main content

Advertisement

Log in

Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. It is crucial to develop powerful tools to predict apoptosis protein locations for rapidly increasing gap between the number of known structural proteins and the number of known sequences in protein databank. In this study, amino acids pair compositions with different spaces are used to construct feature sets for representing sample of protein feature selection approach based on binary particle swarm optimization, which is applied to extract effective feature. Ensemble classifier is used as prediction engine, of which the basic classifier is the fuzzy K-nearest neighbor. Each basic classifier is trained with different feature sets. Two datasets often used in prior works are selected to validate the performance of proposed approach. The results obtained by jackknife test are quite encouraging, indicating that the proposed method might become a potentially useful tool for subcellular location of apoptosis protein, or at least can play a complimentary role to the existing methods in the relevant areas. The supplement information and software written in Matlab are available by contacting the corresponding author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    CAS  PubMed  Google Scholar 

  • Argos P, Rao JK, Hargrave PA (1982) Structural prediction of membrane-bound proteins. Eur J Biochem 128:565–575

    Article  CAS  PubMed  Google Scholar 

  • Bulashevska A, Eils R (2006) Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC Bioinform 7:298–310

    Google Scholar 

  • Cai YD, Chou KC (2003) Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochem Biophys Res Commun 305:407–411

    CAS  PubMed  Google Scholar 

  • Cai YD, Liu XJ, Xu XB, Zhou GP (2001) Support vector machines for predicting structural class. BMC Bioinform 2:3

    CAS  Google Scholar 

  • Cai YD, Zhou GP, Chou KC (2003) Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84:3257–3263

    CAS  PubMed  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    CAS  PubMed  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. J Theor Biol 248(2):377–381. doi:10.1016/j.jtbi.2007.05.019

    CAS  PubMed  Google Scholar 

  • Chen C, Zhou X, Tian YX, Zou XY, Cai PX (2006a) Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem 357:116–121

    CAS  PubMed  Google Scholar 

  • Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006b) Using pseudo-amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243:444–448

    CAS  PubMed  Google Scholar 

  • Chen K, Kurgan LA, Rahbari M (2007a) Prediction of protein crystallization using collocation of amino acid pairs. Biochem Biophys Res Commun 355:764–769

    CAS  PubMed  Google Scholar 

  • Chen K, Kurgan LA, Ruan JH (2007b) Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Struct Biol 7:25

    PubMed  Google Scholar 

  • Chou KC (1988) Review: low-frequency collective motion in biomacromolecules and its biological functions. Bio Chem 30:3–48

    CAS  Google Scholar 

  • Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223:509–517

    CAS  PubMed  Google Scholar 

  • Chou KC (1993) A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem 268:16938–16948

    CAS  PubMed  Google Scholar 

  • Chou KC (1995) A novel approach to predicting protein structural classes in a (20–1)-D amino acid composition space. Proteins 21:319–344

    CAS  PubMed  Google Scholar 

  • Chou KC (1996) Review: prediction of HIV protease cleavage sites in proteins. Anal Biochem 233:1–14

    CAS  PubMed  Google Scholar 

  • Chou KC (2000) Review: prediction of protein structural classes and subcellular locations. Curr Protein Pept Sci 1:171–208

    CAS  PubMed  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins Struct Funct Genet 43(3):246–255

    CAS  PubMed  Google Scholar 

  • Chou KC (2002) A new branch of proteomics: prediction of protein cellular attributes. In: Weinrer PW, Lu Q (eds) Gene cloning and expression technologies. Eaton Publishing, Westborough, pp 57–70

    Google Scholar 

  • Chou KC (2004a) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    CAS  PubMed  Google Scholar 

  • Chou KC (2004b) Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun 319:433–438

    CAS  PubMed  Google Scholar 

  • Chou KC (2004c) Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun 316:636–642

    CAS  PubMed  Google Scholar 

  • Chou KC (2004d) Molecular therapeutic target for type-2 diabetes. J Proteome Res 3:1284–1288

    CAS  PubMed  Google Scholar 

  • Chou KC (2005a) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    CAS  PubMed  Google Scholar 

  • Chou KC (2005b) Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4:1681–1686

    CAS  PubMed  Google Scholar 

  • Chou KC (2005c) Prediction of G-protein-coupled receptor classes. J Proteome Res 4:1413–1418

    CAS  PubMed  Google Scholar 

  • Chou KC, Cai YD (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277:45765–45769

    CAS  PubMed  Google Scholar 

  • Chou KC, Cai YD (2004) Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun 320:1236–1239

    CAS  PubMed  Google Scholar 

  • Chou KC, Cai YD (2005) Predicting protein localization in budding yeast. Bioinformatics 21:944–950

    CAS  PubMed  Google Scholar 

  • Chou KC, Elrod DW (1999) Prediction of membrane protein types and subcellular locations. Proteins: Struct Funct Genet 34:137–153

    CAS  Google Scholar 

  • Chou KC, Elrod DW (2002) Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res 1:429–433

    CAS  PubMed  Google Scholar 

  • Chou KC, Jiang SP (1974) Studies on the rate of diffusion-controlled reactions of enzymes. Sci Sinica 17:664–680

    Google Scholar 

  • Chou KC, Shen HB (2006a) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2006b) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J Proteome Res 5:1888–1897

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2006c) Predicting protein subcellular location by fusing multiple classifiers. J Cell Biochem 99:517–527

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2007b) MemType-2L: a Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Comm 360:339–345

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2007c) Review: recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2007d) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Comm 357:633–640

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2008a) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2008b) ProtIdent: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem Biophys Res Comm 376(2):321–325. doi:10.1016/j.bbrc.2008.08.125

    CAS  PubMed  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Bio 30:275–349

    CAS  Google Scholar 

  • Chou KC, Zhou GP (1982) Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc 104:1409–1413

    CAS  Google Scholar 

  • Chou KC, Nemethy G, Scheraga HA (1984) Energetic approach to packing of a-helices: 2. General treatment of nonequivalent and nonregular helices. J American Chem Soc 106:3161–3170

    CAS  Google Scholar 

  • Chou KC, Maggiora GM, Nemethy G, Scheraga HA (1988) Energetics of the structure of the four-alpha-helix bundle in proteins. Proc Natl Acad Sci U S A 85:4295–4299

    CAS  PubMed  Google Scholar 

  • Chou KC, Zhang TC, Maggiora MG (1997) Disposition of amphiphilic helices in heteropolar environments. Proteins 28:99–108

    CAS  PubMed  Google Scholar 

  • Chou JJ, Li H, Salvessen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signalling. Cell 96:615–624

    CAS  PubMed  Google Scholar 

  • Chou KC, Tomasselli AG, Heinrikson RL (2000) Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett 470:249–256

    CAS  PubMed  Google Scholar 

  • Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS (Erratum: ibid., 2003, Vol. 310, 675). Biochem Biophys Res Comm 308:148–151

    CAS  PubMed  Google Scholar 

  • Chou KC, Wei DQ, Du QS, Sirois S, Zhong WZ (2006) Review: progress in computational approach to drug development against SARS. Curr Med Chem 13:3263–3270

    CAS  PubMed  Google Scholar 

  • Cosic I (1994) Macromolecular bioactivity: is it resonant interaction between macromolecules?—theory and applications. IEEE Trans Biomed Eng 41:1101–1114

    CAS  PubMed  Google Scholar 

  • Dea-Ayuela MA, Perez-Castillo Y, Meneses-Marcel A, Ubeira FM, Bolas-Fernandez F, Chou KC, Gonzalez-Diaz H (2008) HP-Lattice QSAR for dynein proteins: Experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence. Bioorg Med Chem 16:7770–7776

    CAS  PubMed  Google Scholar 

  • Du PF, Li YD (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinform 7:518–526

    Google Scholar 

  • Du QS, Mezey PG, Chou KC (2005) Heuristic molecular lipophilicity potential (HMLP): a 2D-QSAR study to LADH of molecular family pyrazole and derivatives. J Comput Chem 26:461–470

    CAS  PubMed  Google Scholar 

  • Du QS, Huang RB, Chou KC (2008a) Review: recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci 9:248–259

    CAS  PubMed  Google Scholar 

  • Du QS, Huang RB, Wei YT, Du LQ, Chou KC (2008b) Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR). J Comput Chem 29:211–219

    CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    CAS  PubMed  Google Scholar 

  • Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    CAS  PubMed  Google Scholar 

  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    CAS  PubMed  Google Scholar 

  • Fauchere JL, Charton M, Kier LB, Verloop A, Pliska V (1988) Amino acid side chain parameters for correlation studies in biology and pharmacology. Int J Pept Protein Res 32:269–278

    CAS  PubMed  Google Scholar 

  • Feng ZP (2002) An overview on predicting the subcellular location of a protein. In Silico Biol 2:291–303

    CAS  PubMed  Google Scholar 

  • Gao QB, Wang ZZ, Yan C, Du YH (2005a) Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett 579:3444–3448

    CAS  PubMed  Google Scholar 

  • Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC (2005b) Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28:373–376

    CAS  PubMed  Google Scholar 

  • Gao WN, Wei DQ, Li Y, Gao H, Xu WR, Li AX, Chou KC (2007) Agaritine and its derivatives are potential inhibitors against HIV proteases. Med Chem 3:221–226

    CAS  PubMed  Google Scholar 

  • Gonzalez-Diaz H, Sanchez-Gonzalez A, Gonzalez-Diaz Y (2006) 3D-QSAR study for DNA cleavage proteins with a potential anti-tumor ATCUN-like motif. J Inorg Biochem 100:1290–1297

    CAS  PubMed  Google Scholar 

  • Gonzalez-Díaz H, Gonzalez-Díaz Y, Santana L, Ubeira FM, Uriarte E (2008) Proteomics, networks, and connectivity indices. Proteomics 8:750–778

    PubMed  Google Scholar 

  • Hong B, Tang QY, Yang FS (1999) Apen and Cross-ApEn: property, fast algorithm and preliminary application to the study of EEG and cognition. Signal Process 15:100–108 (in Chinese)

    Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    CAS  PubMed  Google Scholar 

  • Huang Y, Li YD (2004) Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics 20(1):21–28

    CAS  PubMed  Google Scholar 

  • Huang J, Shi F (2005) Support vector machines for predicting apoptosis proteins types. Acta Biotheor 53:39–47

    PubMed  Google Scholar 

  • Huang WL, Chen HM, Hwang SF, Ho SY (2006) Accurate prediction of enzyme subfamily class using an adaptive fuzzy K-nearest neighbor method. BioSystems 90(2):405–413. doi:10.1016/j.biosystems.2006.10.004

    PubMed  Google Scholar 

  • Janin J (1979) Surface and inside volumes in globular proteins. Nature 277:491–492

    CAS  PubMed  Google Scholar 

  • Janin J, Wodak S (1978) Conformation of amino acid side-chains in proteins. J Mol Biol 125:357–386

    CAS  PubMed  Google Scholar 

  • Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 27:368–369

    CAS  PubMed  Google Scholar 

  • Kedarisetti KD, Kurgan LA, Dick S (2006) Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 348:981–988

    CAS  PubMed  Google Scholar 

  • Keller JM, Gray MR, Givens JA (1985) A fuzzy k-nearest neighbors algorithm. IEEE Trans Syst Man Cybern 15:580–585

    Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol 4, Perth, Australia, pp 1942–1948

  • Kennedy J, Eberhart RC (1997) A discrete binary version of the particles warm algorithm. Systems, man and cybernetics, 1997. In: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, vol 5, October 12–15, pp 4104–4108

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufman, San Mateo

    Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  • Li TT, Chou KC (1976) The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reaction system: 1. Neutral substrate. Sci Sinica 19:117–136

    CAS  PubMed  Google Scholar 

  • Li Y, Wei DQ, Gao WN, Gao H, Liu BN, Huang CJ, Xu WR, Liu DK, Chen HF, Chou KC (2007) Computational approach to drug design for oxazolidinones as antibacterial agents. Med Chem 3:576–582

    CAS  PubMed  Google Scholar 

  • Lin H, Li QZ (2007a) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    CAS  PubMed  Google Scholar 

  • Lin H, Li QZ (2007b) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J Comput Chem 28:1463–1466

    CAS  PubMed  Google Scholar 

  • Liu H, Wang M, Chou KC (2005a) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336:737–739

    CAS  PubMed  Google Scholar 

  • Liu H, Yang J, Wang M, Xue L, Chou KC (2005b) Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24:385–389

    CAS  PubMed  Google Scholar 

  • Nakashima H, Nishikawa K (1994) Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J Mol Biol 238(1):54–61

    CAS  PubMed  Google Scholar 

  • Park KJ, Kanehisa M (2003) Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19(13):1656–1663

    CAS  PubMed  Google Scholar 

  • Peter ME, Heufelder AE, Hengartner MO (1997) Advances in apoptosis research. Proc Natl Acad Sci USA 94:12736–12737

    CAS  PubMed  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301

    CAS  PubMed  Google Scholar 

  • Prado-Prado FJ, Gonzalez-Diaz H, de la Vega OM, Ubeira FM, Chou KC (2008) Unified QSAR approach to antimicrobials. Part 3: First multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 16:5871–5880

    CAS  PubMed  Google Scholar 

  • Reed JC, Paternostro G (1999) Postmitochondrial regulation of apoptosis during heart failure. Proc Natl Acad Sci USA 96:7614–7616

    CAS  PubMed  Google Scholar 

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    CAS  PubMed  Google Scholar 

  • Schulz JB, Weller M, Moskowitz MA (1999) Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45:421–429

    CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2006a) Ensemble classifier for protein fold pattern recognition. Bioinformatics 22:1717–1722

    CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2006b) Using ensemble classifier to identify membrane protein types. Amino Acids 32(4):483–488. doi:10.1007/s00726-006-0439-2

    PubMed  Google Scholar 

  • Shen HB, Chou KC (2007a) Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355(4):1006–1011

    CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2007b) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Comm 364:53–59

    CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2007c) Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Comm 363:297–303

    CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2008) HIVcleave: a web-server for predicting HIV protease cleavage sites in proteins. Anal Biochem 375:388–390

    CAS  PubMed  Google Scholar 

  • Shen HB, Yang J, Liu XJ, Chou KC (2005) Using supervised fuzzy clustering to predict protein structural classes. Biochem Biophys Res Commun 334:577–581

    CAS  PubMed  Google Scholar 

  • Shen HB, Yang J, Chou KC (2006) Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. J Theor Biol 240:9–13

    CAS  PubMed  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007a) Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 33(1):57–59

    CAS  PubMed  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007b) Methodology development for predicting subcellular location and other attributes of proteins. Expert Rev Proteomics 4(4):453–463

    CAS  PubMed  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Cheng YM, Xie J (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    CAS  PubMed  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Zhou GP (2008) Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution. Amino Acids 35:321–327

    CAS  PubMed  Google Scholar 

  • Sirois S, Wei DQ, Du QS, Chou KC (2004) Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci 44:1111–1122

    CAS  PubMed  Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    CAS  PubMed  Google Scholar 

  • Tanford C (1962) Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J Am Chem Soc 84:4240–4274

    CAS  Google Scholar 

  • Wang JF, Wei DQ, Chen C, Li Y, Chou KC (2008) Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett 15:27–32

    PubMed  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Huang YS, Chou KC (2005) Using complexity measure factor to predict protein subcellular location. Amino Acids 28:57–61

    CAS  PubMed  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC (2006a) Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30(1):49–54

    CAS  PubMed  Google Scholar 

  • Xiao X, Shao SH, Huang ZD, Chou KC (2006b) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27:478–482

    PubMed  Google Scholar 

  • Zhang R, Wei DQ, Du QS, Chou KC (2006a) Molecular modeling studies of peptide drug candidates against SARS. Med Chem 2:309–314

    CAS  PubMed  Google Scholar 

  • Zhang TL, Ding YS, Chou KC (2006b) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput Biol Chem 30:367–371

    CAS  PubMed  Google Scholar 

  • Zhang ZH, Wang ZH, Zhang ZR, Wang YX (2006c) A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett 580:6169–6174

    CAS  PubMed  Google Scholar 

  • Zhang TL, Ding YS, Chou KC (2008) Prediction protein structural classes with pseudo amino acid composition: approximate entropy and hydrophobicity pattern. J Theor Biol 250(1):186–193

    CAS  PubMed  Google Scholar 

  • Zheng H, Wei DQ, Zhang R, Wang C, Wei H, Chou KC (2007) Screening for new agonists against Alzheimer’s Disease. Med Chem 3:488–493

    CAS  PubMed  Google Scholar 

  • Zhou GP (1998) An Intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    CAS  PubMed  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins 44:57–59

    CAS  PubMed  Google Scholar 

  • Zhou GP, Cai YD (2006) Predicting protease types by hybridizing gene ontology and pseudo amino acid composition. Proteins 63(3):681–684

    CAS  PubMed  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins: Struct Funct Genet 50:44–48

    CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2008) Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids 35(2):383–388

    CAS  PubMed  Google Scholar 

  • Zimmerman JM, Eliezer N, Simha R (1968) The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21:170–201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Z. H. Zhang for providing the datasets. This work was supported in part by Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (No. 20060255006), Project of the Shanghai Committee of Science and Technology (No. 08JC1400100), Shanghai Talent Developing Foundation (No. 001), Specialized Foundation for Excellent Talent from Shanghai, and the Open Fund from the Key Laboratory of MICCAI of Shanghai (06dz22013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Q., Ding, YS., Jiang, XY. et al. Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection. Amino Acids 38, 975–983 (2010). https://doi.org/10.1007/s00726-008-0209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0209-4

Keywords

Navigation