Skip to main content
Log in

Lasiocepsin, a novel cyclic antimicrobial peptide from the venom of eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the venom of eusocial bee Lasioglossum laticeps, we identified a novel unique antimicrobial peptide named lasiocepsin consisting of 27 amino acid residues and two disulfide bridges. After identifying its primary structure, we synthesized lasiocepsin by solid-phase peptide synthesis using two different approaches for oxidative folding. The oxidative folding of fully deprotected linear peptide resulted in a mixture of three products differing in the pattern of disulfide bridges. Regioselective disulfide bond formation significantly improved the yield of desired product. The synthetic lasiocepsin possessed antimicrobial activity against both Gram-positive and -negative bacteria, antifungal activity against Candida albicans, and no hemolytic activity against human erythrocytes. We synthesized two lasiocepsin analogs cyclized through one native disulfide bridge in different positions and having the remaining two cysteines substituted by alanines. The analog cyclized through a Cys8–Cys25 disulfide bridge showed reduced antimicrobial activity compared to the native peptide while the second one (Cys17–Cys27) was almost inactive. Linear lasiocepsin having all four cysteine residues substituted by alanines or alkylated was also inactive. That was in contrast to the linear lasiocepsin with all four cysteine residues non-paired, which exhibited remarkable antimicrobial activity. The shortening of lasiocepsin by several amino acid residues either from the N- or C-terminal resulted in significant loss of antimicrobial activity. Study of Bacillus subtilis cells treated by lasiocepsin using transmission electron microscopy showed leakage of bacterial content mainly from the holes localized at the ends of the bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechno 12:1184–1193

    Article  CAS  Google Scholar 

  • Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L (2008a) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003

    Article  PubMed  Google Scholar 

  • Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednárová L, Borovičková L, Slaninová J, Fučík V (2008b) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chem Bio Chem 9:2815–2821

    PubMed  Google Scholar 

  • Čeřovský V, Buděšínský M, Hovorka O, Cvačka J, Voburka Z, Slaninová J, Borovičková L, Fučík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chem Bio Chem 10:2089–2099

    PubMed  Google Scholar 

  • Čeřovský V, Slaninová J, Fučík V, Monincová L, Bednárová L, Maloň P, Štokrová J (2011) Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chem Bio Chem 12:1352–1361

    Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Google Scholar 

  • Dawson RM, Liu C-Q (2010) Disulphide bonds of the peptide protegrin-1 are not essential for antimicrobial activity and haemolytic activity. Int J Antimicrob Agents 36:579–580

    Article  PubMed  CAS  Google Scholar 

  • Dennison SR, Whittaker M, Hartus F, Phoenix DA (2006) Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumor cell membranes. Curr Protein Peptide Sci 7:487–499

    Article  CAS  Google Scholar 

  • Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochem Biophys Acta 1788:289–294

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial targets. J Pept Sci 17:298–305

    Article  PubMed  CAS  Google Scholar 

  • Fázio MA, Iliveira VX Jr, Bulet P, Miranda MTM, Daffre S, Miranda A (2006) Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability. Biopolymers (Peptide Scince) 84:205–218

    Article  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Kim J-Y, Park S-C, Yoon M-Y, Hahm K-S, Park Y (2011) C-terminal amidation of PMAP-23: translocation to the inner membrane of gram-negative bacteria. Amino Acids 40:183–195

    Article  PubMed  CAS  Google Scholar 

  • Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K (2005) Structure–activity relation of human β-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44:9804–9816

    Article  PubMed  Google Scholar 

  • Konno K, Rangel M, Oliveira JS, dos Santos Cabrera MP, Fontana R, Hirata IY et al (2007) Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasp oreumenes decoratus. Peptides 28:2320–2327

    Article  PubMed  CAS  Google Scholar 

  • Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    Article  PubMed  CAS  Google Scholar 

  • Kuzuhara T, Nakajima Y, Matsuyama K, Natori S (1990) Determination of the disulfide array in sapecin, and antibacterial peptide of Sarcophaga peprigrina (Flesh fly). J Biochem 107:514–518

    PubMed  CAS  Google Scholar 

  • Kwon M-Y, Hong S-Y, Lee K-H (1998) Structure–activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim Biophys Acta 1387:239–248

    Article  PubMed  CAS  Google Scholar 

  • Labbé-Julié C, Granier C, Albericio F, Defendini M-L, Ceard B, Rochat H, Van Rietschoten J (1991) Binding and toxicity of apamin. Characterization of the active site. Eur J Biochem 196:639–645

    Article  Google Scholar 

  • Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EPH, Tan DTH, Beuerman RW (2008) Linear analogues of human β-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. Chem Bio Chem 9:964–973

    PubMed  CAS  Google Scholar 

  • Mandal M, Jagannadham MV, Nagaraj R (2002) Antimicrobial activities and conformations of bovine β-defensin BNBD-12 and analogs: structural and disulfide bridge requirements for activity. Peptides 23:413–418

    Article  PubMed  CAS  Google Scholar 

  • Monincová L, Buděšínský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39:763–775

    Article  PubMed  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers (Peptide Science) 47:451–463

    Article  CAS  Google Scholar 

  • Oyston PCF, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microb 58:977–987

    Article  CAS  Google Scholar 

  • Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 469:419–423

    Article  PubMed  CAS  Google Scholar 

  • Slaninová J, Putnová H, Borovičková L, Šácha P, Čeřovská V, Monincová L, Fučík V (2011) The antifungal effect of peptides from the hymenoptera venom and their analogs. Centr Eur J Biol 6:150–159

    Article  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers (Peptide Science) 80:717–735

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science) 55:4–30

    Article  CAS  Google Scholar 

  • Varkey J, Nagaraj R (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 49:4561–4566

    Article  PubMed  CAS  Google Scholar 

  • Vasileiou Z, Barlos KK, Gatos D, Adermann K, Deraison C, Barlos K (2010) Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. Biopolymers 94:339–349

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  PubMed  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  PubMed  CAS  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membrane Biol 239:27–34

    Article  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 55:27–55

    Article  PubMed  CAS  Google Scholar 

  • Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  PubMed  CAS  Google Scholar 

  • Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, Grants Nos. 203/08/0536 and P205/10/1276, and by Research Project No. Z40550506 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. We thank our technical assistant Mrs. Hana Hulačová for the help with peptide synthesis. Lenka Monincová thanks the Ministry of Education of the Czech Republic for a stipend and for additional financial support from Specific University Research Project No. 33779266 awarded by Charles University Prague. We also thank Gale A. Kirking at English Editorial Services, s.r.o. for assistance with the English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Čeřovský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monincová, L., Slaninová, J., Fučík, V. et al. Lasiocepsin, a novel cyclic antimicrobial peptide from the venom of eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Amino Acids 43, 751–761 (2012). https://doi.org/10.1007/s00726-011-1125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1125-6

Keywords

Navigation