Skip to main content

Snake Venom Components as Basis for Biologically Active Synthetic Peptides

  • Living reference work entry
  • First Online:
Toxins and Drug Discovery

Part of the book series: Toxinology ((TOXI))

  • 148 Accesses

Abstract

In this chapter, an attempt is made to collect data on synthetic peptides derived from peptide and protein components from snake venoms. The focus is on shorter fragments of natural-occurring compounds and to a lesser extent their mutant analogs. In general, these synthetic variants were prepared either to identify the “active sites” of the natural molecules, as well as in structural and functional research of their targets, or to design new compounds with potential for practical use. Taking into account the huge diversity of peptide-protein components in the snake venoms (and limited volume of this Chapter), the selection of components for the review was limited to only the most important classes of compounds. Among these are myotoxins, so-called three-finger toxins, phospholipases, metalloproteinases, and disintegrins, as well as several groups of small peptides with different structure and properties which we called “disulfide poor” compounds (containing two or less disulfides).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akif M, Masuyer G, Schwager SL, Bhuyan BJ, Mugesh G, Isaac RE, Sturrock ED, Acharya KR. Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril. FEBS J. 2011;278(19):3644–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akif M, Masuyer G, Bingham RJ, Sturrock ED, Isaac RE, Acharya KR. Structural basis of peptide recognition by the angiotensin-1 converting enzyme homologue AnCE from Drosophila melanogaster. FEBS J. 2012;279(24):4525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci. 2015;16(6):532–48.

    Article  PubMed  Google Scholar 

  • Aumelas A, Chiche L, Kubo S, Chino N, Watanabe TX, Kobayashi Y. The chimeric peptide [Lys(-2)-Arg(-1)]-sarafotoxin-S6b, composed of the endothelin pro-sequence and sarafotoxin, retains the salt-bridge staple between Arg(-1) and Asp8 previously observed in [Lys(-2)-Arg(-1)]-endothelin. Implications of this salt-bridge in the contractile activity and the oxidative folding reaction. Eur J Biochem. 1999;266(3):977–85.

    Article  CAS  PubMed  Google Scholar 

  • Baker B, Utaisincharoen P, Tu AT. Structure-function relationship of myotoxin a using peptide fragments. Arch Biochem Biophys. 1992;298(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  • Baker KJ, East JM, Lee AG. Mechanism of inhibition of Ca(2+)-ATPase by myotoxin a. Biochem J. 1995;307(Pt 2):571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazan-Socha S, Kisiel DG, Young B, Theakston RD, Calvete JJ, Sheppard D, Marcinkiewicz C. Structural requirements of MLD-containing disintegrins for functional interaction with α4β1 and α9β1 integrins. Biochemistry. 2004;43(6):1639–47.

    Article  CAS  PubMed  Google Scholar 

  • Bonelli F, Pessi A, Verdini AS. Solid phase synthesis of retro-inverso peptide analogues. Synthesis and biological activity of the partially modified retro-inverso analogue of the bradykinin potentiating peptide BPP9a [gLys6, (RS)-mPhe7, Ala8] BPP9a. Int J Pept Protein Res. 1984;24(6):553–6.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. The continuing saga of snake venom disintegrins. Toxicon. 2013;62:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Dolimbek BZ, Atassi MZ. Protection against alpha-bungarotoxin poisoning by immunization with synthetic toxin peptides. Mol Immunol. 1996;33(7–8):681–9.

    Article  CAS  PubMed  Google Scholar 

  • Dubovskii PV, Utkin YN. Cobra cytotoxins: structural organization and antibacterial activity. Acta Nat. 2014;6(3):11–8.

    CAS  Google Scholar 

  • Dufourcq J, Faucon JF, Bernard E, Pezolet M, Tessier M, van Rietschoten J, Delori P, Rochat H. Structure-function relationships for cardiotoxins interacting with phospholipids. Toxicon. 1982;20(1):165–74.

    Article  CAS  PubMed  Google Scholar 

  • Falkenstein RJ, Gornalusse GG, Peña C. Synthesis and characterization of a chimeric peptide derived from fasciculin that inhibits acetylcholinesterase. J Pept Sci. 2004;10(6):342–9.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes CA, Borges RJ, Lomonte B, Fontes MR. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochim Biophys Acta. 2014;1844(12):2265–76.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SH, Greene LH, Alabaster VA, Bakhle YS, Vane JR. Activity of various fractions of bradykinin-potentiating factor against angiotensin I converting enzyme. Nature. 1970;225(5230):379–80.

    Article  CAS  PubMed  Google Scholar 

  • Fortes-Dias CL, Santos RM, Magro AJ, Fontes MR, Chávez-Olórtegui C, Granier C. Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays. Biochimie. 2009;91(11–12):1482–92.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi MA, Ligny-Lemaire C, Wollberg Z, Wery M, Galat A, Ogawa T, Muller BH, Lamthanh H, Doljansky Y, Bdolah A, Stöcklin R, Ducancel F. Long-sarafotoxins: characterization of a new family of endothelin-like peptides. Peptides. 2004;25(8):1243–51.

    Article  CAS  PubMed  Google Scholar 

  • Heyl DL, Cody WL, He JX, Flynn MA, Welch KM, Reynolds EE, Doherty AM. Truncated analogues of endothelin and sarafotoxin are selective for the ETB receptor subtype. Pept Res. 1993;6(5):238–41.

    CAS  PubMed  Google Scholar 

  • Hirata Y, Yoshimi H, Marumo F, Watanabe TX, Kumagaye S, Nakajima K, Kimura T, Sakakibara S. Interaction of synthetic sarafotoxin with rat vascular endothelin receptors. Biochem Biophys Res Commun. 1989;162(1):441–7.

    Article  CAS  PubMed  Google Scholar 

  • Huang TF, Holt JC, Lukasiewicz H, Niewiarowski S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem. 1987;262(33):16157–63.

    CAS  PubMed  Google Scholar 

  • Ito M, Hamako J, Sakurai Y, Matsumoto M, Fujimura Y, Suzuki M, Hashimoto K, Titani K, Matsui T. Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry. 2001;40(14):4503–11.

    Article  CAS  PubMed  Google Scholar 

  • Ivaska J, Käpylä J, Pentikäinen O, Hoffrén AM, Hermonen J, Huttunen P, Johnson MS, Heino J. A peptide inhibiting the collagen binding function of integrin α2I domain. J Biol Chem. 1999;274(6):3513–21.

    Article  CAS  PubMed  Google Scholar 

  • Jha D, Mishra R, Gottschalk S, et al. CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjug Chem. 2011;22(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  • Jia LG, Wang XM, Shannon JD, Bjarnason JB, Fox JW. Function of disintegrin-like/cysteine-rich domains of atrolysin A. Inhibition of platelet aggregation by recombinant protein and peptide antagonists. J Biol Chem. 1997;272(20):13094–102.

    Article  CAS  PubMed  Google Scholar 

  • Juillerat MA, Schwendimann B, Hauert J, Fulpius BW, Bargetzi JP. Specific binding to isolated acetylcholine receptor of a synthetic peptide duplicating the sequence of the presumed active center of a lethal toxin from snake venom. J Biol Chem. 1982;257:2901–7.

    CAS  PubMed  Google Scholar 

  • Kafurke U, Erijman A, Aizner Y, Shifman JM, Eichler J. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2. J Pept Sci. 2015;21(9):723–30.

    Article  CAS  PubMed  Google Scholar 

  • Kamiguti AS, Moura-da-Silva AM, Laing GD, Knapp T, Zuzel M, Crampton JM, Theakston RD. Collagen-induced secretion-dependent phase of platelet aggregation is inhibited by the snake venom metalloproteinase jararhagin. Biochim Biophys Acta. 1997;1335(1–2):209–17.

    Article  PubMed  Google Scholar 

  • Kasheverov I, Kudryavtsev D, Shelukhina I, Ivanov I, Stonik V, Utkin Y, Chugunov A, Efremov R. Novel natural and designed cholinergic ligands: the possibilities of fundamental and practical applications. Toxicon. 2015;103S:63.

    Google Scholar 

  • Kato H, Suzuki T. Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffi. Isolation of five bradykinin-potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry. 1971;10(6):972–80.

    Article  CAS  PubMed  Google Scholar 

  • Kodama RT, Cajado-Carvalho D, Kuniyoshi AK, Kitano ES, Tashima AK, Barna BF, Takakura AC, Serrano SM, Dias-Da-Silva W, Tambourgi DV, Portaro FV. New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms. Biochim Biophys Acta. 2015;1850(6):1180–7.

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtsev DS, Shelukhina IV, Son LV, Ojomoko LO, Kryukova EV, Lyukmanova EN, Zhmak MN, Dolgikh DA, Ivanov IA, Kasheverov IE, Starkov VG, Ramerstorfer J, Sieghart W, Tsetlin VI, Utkin YN. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J Biol Chem. 2015;290(37):22747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulon K, Valensin D, Kamysz W, Nadolny R, Gaggelli E, Valensin G, Kozłowski H. Binding of Ni2+ and Cu2+ ions to peptides with a Cys-His motif. Dalton Trans. 2008;39:5323–30.

    Article  Google Scholar 

  • Lauer-Fields JL, Cudic M, Wei S, Mari F, Fields GB, Brew K. Engineered sarafotoxins as tissue inhibitor of metalloproteinases-like matrix metalloproteinase inhibitors. J Biol Chem. 2007;282(37):26948–55.

    Article  CAS  PubMed  Google Scholar 

  • Lentz TL. Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor. Biochemistry. 1991;30(45):10949–57.

    Article  CAS  PubMed  Google Scholar 

  • Léonetti M, Pillet L, Maillère B, Lamthanh H, Frachon P, Couderc J, Ménez A. Immunization with a peptide having both T cell and conformationally restricted B cell epitopes elicits neutralizing antisera against a snake neurotoxin. J Immunol. 1990;145:4214–21.

    PubMed  Google Scholar 

  • Lomonte B, Moreno E, Tarkowski A, Hanson LA, Maccarana M. Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling. J Biol Chem. 1994;269(47):29867–73.

    CAS  PubMed  Google Scholar 

  • Lomonte B, Pizarro-Cerdá J, Angulo Y, Gorvel JP, Moreno E. Tyr-- > Trp-substituted peptide 115-129 of a Lys49 phospholipase A(2) expresses enhanced membrane-damaging activities and reproduces its in vivo myotoxic effect. Biochim Biophys Acta. 1999;1461(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  • Lopes DM, Junior NE, Costa PP, Martins PL, Santos CF, Carvalho ED, Carvalho MD, Pimenta DC, Cardi BA, Fonteles MC, Nascimento NR, Carvalho KM. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake). Toxicon. 2014;90:36–44.

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Armugam A, Jeyaseelan K. Cytotoxic potency of cardiotoxin from Naja sputatrix: development of a new cytolytic assay. Biochem J. 2002;366(Pt 1):35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchot P, Bougis PE, Ceard B, Van Rietschoten J, Rochat H. Localization of the toxic site of Naja mossambica cardiotoxins: small synthetic peptides express an in vivo lethality. Biochem Biophys Res Commun. 1988;153(2):642–7.

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Tu AT. Structure-function relationship of lapemis toxin: a synthetic approach. Arch Biochem Biophys. 1991;29:69–75.

    Google Scholar 

  • Moreno-Murciano MP, Monleón D, Calvete JJ, Celda B, Marcinkiewicz C. Amino acid sequence and homology modeling of obtustatin, a novel non-RGD-containing short disintegrin isolated from the venom of Vipera lebetina obtusa. Protein Sci. 2003;12(2):366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munawar A, Trusch M, Georgieva D, Hildebrand D, Kwiatkowski M, Behnken H, Harder S, Arni R, Spencer P, Schlüter H, Betzel C. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis. Toxins (Basel). 2014;6(3):850–68.

    Article  CAS  Google Scholar 

  • Murayama N, Hayashi MA, Ohi H, Ferreira LA, Hermann VV, Saito H, Fujita Y, Higuchi S, Fernandes BL, Yamane T, de Camargo AC. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci U S A. 1997;94(4):1189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nery AA, Trujillo CA, Lameu C, Konno K, Oliveira V, Camargo AC, Ulrich H, Hayashi MA. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors. Peptides. 2008;29(10):1708–15.

    Article  CAS  PubMed  Google Scholar 

  • Núñez CE, Angulo Y, Lomonte B. Identification of the myotoxic site of the Lys49 phospholipase A(2) from Agkistrodon piscivorus piscivorus snake venom: synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert membrane-damaging activities. Toxicon. 2001;39(10):1587–94.

    Article  PubMed  Google Scholar 

  • Oguiura N, Boni-Mitake M, Rádis-Baptista G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon. 2005;46(4):363–70.

    Article  CAS  PubMed  Google Scholar 

  • Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971;10(22):4033–9.

    Article  CAS  PubMed  Google Scholar 

  • Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977;196(4288):441–4.

    Article  CAS  PubMed  Google Scholar 

  • Pimenta DC, Prezoto BC, Konno K, Melo RL, Furtado MF, Camargo AC, Serrano SM. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. Rapid Commun Mass Spectrom. 2007;21(6):1034–42.

    Article  CAS  PubMed  Google Scholar 

  • Pinto AF, Terra RM, Guimaraes JA, Fox JW. Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Arch Biochem Biophys. 2007;457(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  • Rádis-Baptista G, Kerkis I. Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties. Curr Pharm Des. 2011;17(38):4351–61.

    Article  PubMed  Google Scholar 

  • Rádis-Baptista G, de la Torre BG, Andreu D. A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. J Med Chem. 2008;51(22):7041–4.

    Article  PubMed  Google Scholar 

  • Rovero P, Patacchini R, Maggi CA. Structure-activity studies on endothelin (16–21), the C-terminal hexapeptide of the endothelins, in the guinea-pig bronchus. Br J Pharmacol. 1990;101(1):232–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio SC, Hyslop S, Fontes MR, Prado-Franceschi J, Zambelli VO, Magro AJ, Brigatte P, Gutierrez VP, Cury Y. Crotoxin: novel activities for a classic beta-neurotoxin. Toxicon. 2010;55(6):1045–60.

    Article  CAS  PubMed  Google Scholar 

  • Santamaría C, Larios S, Angulo Y, Pizarro-Cerda J, Gorvel JP, Moreno E, Lomonte B. Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon. 2005;45(7):807–15.

    Article  PubMed  Google Scholar 

  • Schmidt JJ, Weinstein SA. Structure-function studies of waglerin I, a lethal peptide from the venom of Wagler’s pit viper. Trimeresurus Wagleri Toxicon. 1995;33:1043–9.

    Article  CAS  PubMed  Google Scholar 

  • Schneider LA, Schlenner SM, Feyerabend TB, Wunderlin M, Rodewald HR. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J Exp Med. 2007;204(11):2629–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonato M, Morbiato L, Zorzi V, Caccin P, Fernández J, Massimino ML, Polverino de Laureto P, Tonello F. Production in Escherichia coli, folding, purification and characterization of notexin with wild type sequence and with N-terminal and catalytic site mutations. Toxicon. 2014;88:11–20.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Hinman CL. A cyclic peptide, L1AD3, induces early signs of apoptosis in human leukemic T-cell lines. J Biochem Mol Toxicol. 2004;18(4):204–20.

    Article  CAS  PubMed  Google Scholar 

  • Tsai IH, Wang YM, Hseu MJ. Mutagenesis analyses explore residues responsible for the neurotoxic and anticoagulant activities of Trimucrotoxin, a pit-viper venom Asn6-phospholipase A2. Biochimie. 2011;93(2):277–85.

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN, Weise C, Kasheverov IE, Andreeva TV, Kryukova EV, Zhmak MN, Starkov VG, Hoang NA, Bertrand D, Ramerstorfer J, Sieghart W, Thompson AJ, Lummis SC, Tsetlin VI. Azemiopsin from Azemiops feae viper venom, a novel polypeptide ligand of nicotinic acetylcholine receptor. J Biol Chem. 2012;287(32):27079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan C, Yan Z, Xie C, Lu W. Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Mol Pharm. 2010;7(6):1940–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor E. Kasheverov or Victor I. Tsetlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kasheverov, I.E., Tsetlin, V.I. (2016). Snake Venom Components as Basis for Biologically Active Synthetic Peptides. In: Gopalakrishnakone, P. (eds) Toxins and Drug Discovery. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6726-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6726-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6726-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics