Skip to main content

Advertisement

Log in

Possible involvement of transglutaminase-catalyzed reactions in the physiopathology of neurodegenerative diseases

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminases are ubiquitous enzymes, which catalyze post-translational modifications of proteins. Recently, transglutaminases and tranglutaminase-catalyzed post-translational modification of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for human neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. In this review, we focus on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achyuthan KE, Greenberg CS (1987) Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 262:1901–1906

    PubMed  CAS  Google Scholar 

  • Adams RD, Victor M (1993) Principles of neurology. McGraw-Hill, Inc. New York

  • Appelt DM, Kopen GC, Boyne LJ, Balin BJ (1996) Localization of transglutaminase in hippocampal neurons: implications for Alzheimer’s disease. J Histochem Cytochem 44:1421–1427

    Article  PubMed  CAS  Google Scholar 

  • Citron BA, Santa Cruz KS, Davies PJ, Festoff BW (2001) Intron-exon swapping of transglutaminase mRNA and neuronal tau aggregation in Alzheimer’s disease. J Biol Chem 276:3295–3301

    Article  PubMed  CAS  Google Scholar 

  • Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW (2002) Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 40:69–78

    Article  PubMed  CAS  Google Scholar 

  • Davies JE, Rose C, Sarkar S, Rubinsztein DC (2010) Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Sci Transl Med 2:34ra40

    Google Scholar 

  • De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21:148–155

    Article  PubMed  Google Scholar 

  • Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJ, Ratan RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of cystamine in a murine model of Huntington’s disease. J Neurosci 22:8942–8950

    PubMed  CAS  Google Scholar 

  • Dudek SM, Johnson GV (1993) Transglutaminase catalyzes the formation of sodium dodecyl sulfate-insoluble, Alz-50-reactive polymers of tau. J Neurochem 61:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Johnson GV (1994) Transglutaminase facilitates the formation of polymers of the beta-amyloid peptide. Brain Res 651:129–133

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279:17607–17616

    Article  PubMed  CAS  Google Scholar 

  • Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl)lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54:1–56

    PubMed  CAS  Google Scholar 

  • Gentile V, Porta R, Chiosi E, Spina A, Caputo I, Valente F, Pezone R, Davies PJA, Illiano G (1997) Tissue transglutaminase and adenylate cyclase interactions in Balb-C 3T3 fibroblast membranes. Biochim Biophys Acta 1357:115–122

    Article  PubMed  CAS  Google Scholar 

  • Gentile V, Sepe C, Calvani M, Melone MAB, Cotrufo R, Cooper AJL, Blass JP, Peluso G (1998) Tissue transglutaminase-catalyzed formation of high-molecular-weight aggregates in vitro is favored with long polyglutamine domains: a possible mechanism contributing to CAG-triplet diseases. Arch Biochem Biophys 352:314–321

    Article  PubMed  CAS  Google Scholar 

  • Grierson AJ, Johnson GV, Miller CC (2001) Three different human τ isoforms and rat neurofilament light, middle and heavy chain proteins are cellular substrates for transglutaminase. Neurosci Lett 298:9–12

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Larsson A, Meister A (1997) Inhibition of γ-glutamylcysteine synthetase by cystamine: an approach to a therapy of 5-oxoprolinuria (pyroglutamic aciduria). Biochem Biophys Res Commun 79:919–925

    Article  Google Scholar 

  • Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64:332–343

    Article  PubMed  CAS  Google Scholar 

  • Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T (2008) Transglutaminase induces protofibril-like amyloid β-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 283:16790–16800

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulfide isomerase. Biochem J 373:793–803

    Article  PubMed  CAS  Google Scholar 

  • Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, Date H, Oyake M, Sato A, Egawa S, Ikeuchi T, Tanaka H, Nakano R, Tanaka K, Hozumi I, Inuzuka T, Takahashi H, Tsuji S (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 18:111–117

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Hoffner G, Verbeke P, Djian P, Green H (2003) Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci USA 100:2409–2414

    Article  PubMed  CAS  Google Scholar 

  • Jeitner TM, Matson WR, Folk JE, Blass JP, Cooper AJL (2008) Increased levels of γ-glutamylamines in Huntington disease CSF. J Neurochem 106:37–44

    Article  PubMed  CAS  Google Scholar 

  • Junn E, Ronchetti RD, Quezado MM, Kim SY, Mouradian MM (2003) Tissue transglutaminase-induced aggregation of α-synuclein: Implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 100:2047–2052

    Article  PubMed  CAS  Google Scholar 

  • Kahlem P, Green H, Djian P (1998) Transglutaminase action imitates Huntington’s disease: selective polymerization of huntingtin containing expanded polyglutamine. Mol Cell 1:595–601

    Article  PubMed  CAS  Google Scholar 

  • Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L (1999) Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96:7388–7393

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 101:4175–4179

    Article  PubMed  CAS  Google Scholar 

  • Kim S-Y, Grant P, Lee JHC, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminase 1 and 2 in Alzheimer’s disease. J Biol Chem 274:30715–30721

    Article  PubMed  CAS  Google Scholar 

  • Krasnikov BF, Kim SY, McConoughey SJ, Ryu H, Xu H, Stavrovskaya I, Iismaa SE, Mearns BM, Ratan RR, Blass JP, Gibson GE, Cooper AJ (2005) Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria. Biochemistry 44:7830–7843

    Article  PubMed  CAS  Google Scholar 

  • Lahav J, Karniel E, Bagoly Z, Sheptovitsky V, Dardik R, Inbal A (2009) Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 101:840–844

    PubMed  CAS  Google Scholar 

  • Lai T-S, Liu Y, Weidong L, Greenberg C (2007) Identification of two GTP independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 21:4131–4134

    Article  PubMed  CAS  Google Scholar 

  • Lesort M, Lee M, Tucholski J, Johnson GVW (2003) Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 278:3825–3830

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Mol Cell Biol 4:140–156

    Article  CAS  Google Scholar 

  • Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi V, Melino G, Moreno S, Pavone F, Oliviero S, Fesus L, Piacentini M (2002) ‘Tissue’ transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington’s disease. Cell Death Differ 9:873–880

    Article  PubMed  CAS  Google Scholar 

  • McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJ, Antonyak MA, Cerione RA, Li B, Starkov A, Chaturvedi RK, Beal MF, Coppola G, Geschwind DH, Ryu H, Xia L, Iismaa SE, Pallos J, Pasternack R, Hils M, Fan J, Raymond LA, Marsh JL, Thompson LM, Ratan RR (2010) Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol Med 2:349–370

    Article  PubMed  CAS  Google Scholar 

  • Mian S, El Alaoui S, Lawry J, Gentile V, Davies PJA, Griffin M (1995) The importance of the GTP binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett 370:27–31

    Article  PubMed  CAS  Google Scholar 

  • Miller ML, Johnson GV (1995) Transglutaminase cross-linking of the tau protein. J Neurochem 65:1760–1770

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M (1997) Expression of GTP-dependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 272:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signalling function. Science 264:1593–1596

    Article  PubMed  CAS  Google Scholar 

  • Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276:20673–20678

    Article  PubMed  CAS  Google Scholar 

  • Piacentini M, Martinet N, Beninati S, Folk JE (1988) Free and protein conjugated-polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid. J Biol Chem 263:3790–3794

    PubMed  CAS  Google Scholar 

  • Schmid AW, Condemi E, Tuchscherer G, Chiappe D, Mutter M, Vogel H, Moniatte M, Tsybin YO (2011) Tissue transglutaminase-mediated glutamine deamidation of β-amyloid peptide increases peptide solubility, whereas enzymatic cross-linking and peptide fragmentation may serve as molecular triggers for rapid peptide aggregation. J Biol Chem 286:12172–12188

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Abraham C, Ihara Y (1982) Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Proc Natl Acad Sci USA 79:6070–6074

    Article  PubMed  CAS  Google Scholar 

  • Singer SM, Zainelli GM, Norlund MA, Lee JM, Muma NA (2002) Transglutaminase bonds in neurofibrillary tangles and paired helical filament tau early in Alzheimer’s disease. Neurochem Int 40:17–30

    Article  PubMed  CAS  Google Scholar 

  • Smethurst PA, Griffin M (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by calcium and nucleotides. Biochem J 313:803–808

    PubMed  CAS  Google Scholar 

  • Tee AEL, Marshall GM, Liu PY, Xu N, Haber M, Norris MD, Iismaa SE, Liu T (2010) Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation. J Biol Chem 285:3561–3567

    Article  PubMed  CAS  Google Scholar 

  • Thomazy V, Fesus L (1989) Differential distribution of tissue transglutaminase in human cells: An immunohistochemical study. Cell Tissue Res 255:215–224

    Article  PubMed  CAS  Google Scholar 

  • Verhoef LGGC, Lindsten K, Masucci MG, Dantuma NP (2002) Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11:2689–2700

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmus MM, Grunberg SC, Bol JG, van Dam AM, Hoozemans JJ, Rozenmuller AJ, Drukarch B (2009) Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer’s disease brain. Brain Pathol 19:612–622

    Article  PubMed  CAS  Google Scholar 

  • Zemaitaitis MO, Kim SY, Halverson RA, Troncoso JC, Lee JM, Muma NA (2003) Transglutaminase activity, protein, and mRNA expression are increased in progressive supranuclear palsy. J Neuropathol Exp Neurol 62:173–184

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Italian Education Department.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Gentile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A., Giuliano, A., Collaro, D. et al. Possible involvement of transglutaminase-catalyzed reactions in the physiopathology of neurodegenerative diseases. Amino Acids 44, 111–118 (2013). https://doi.org/10.1007/s00726-011-1081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1081-1

Keywords

Navigation