Skip to main content

Advertisement

Log in

Microglial self-defence mediated through GLT-1 and glutathione

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Glutamate is stored in synaptic vesicles in presynaptic neurons. It is released into the synaptic cleft to provide signalling to postsynaptic neurons. Normally, the astroglial glutamate transporters GLT-1 and GLAST take up glutamate to mediate a high signal-to-noise ratio in the synaptic signalling, and also to prevent excitotoxic effects by glutamate. In astrocytes, glutamate is transformed into glutamine, which is safely transported back to neurons. However, in pathological conditions, such as an ischemia or virus infection, astroglial transporters are down-regulated which could lead to excitotoxicity. Lately, it was shown that even microglia can express glutamate transporters during pathological events. Microglia have two systems for glutamate transport: GLT-1 for transport into the cells and the x c system for transport out of the cells. We here review results from our work and others, which demonstrate that microglia in culture express GLT-1, but not GLAST, and transport glutamate from the extracellular space. We also show that TNF-α can induce increased microglial GLT-1 expression, possibly associating the expression with inflammatory systems. Furthermore, glutamate taken up through GLT-1 may be used for direct incorporation into glutathione and to fuel the intracellular glutamate pool to allow cystine uptake through the x c system. This can lead to a defence against oxidative stress and have an antiviral function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    Article  PubMed  CAS  Google Scholar 

  • Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175:4189–4193

    PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  PubMed  CAS  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    PubMed  CAS  Google Scholar 

  • Barron KD (1995) The microglial cell. A historical review. J Neurol Sci 134:57–68

    Article  PubMed  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Bradl M, Hohlfeld R (2003) Molecular pathogenesis of neuroinflammation. J Neurol Neurosurg Psychiatry 74:1364–1370

    Article  PubMed  CAS  Google Scholar 

  • Broberg EK, Hukkanen V (2005) Immune response to herpes simplex virus and gamma134.5 deleted HSV vectors. Curr Gene Ther 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Brooke SM, Sapolsky RM (2003) Effects of glucocorticoids in the gp120-induced inhibition of glutamate uptake in hippocampal cultures. Brain Res 972:137–141

    Article  PubMed  CAS  Google Scholar 

  • Carlson NG, Wieggel WA, Chen J, Bacchi A, Rogers SW, Gahring LC (1999) Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 163:3963–3968

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Noack H, Possel H, Keilhoff G, Wolf G (1999) Glutathione levels in primary glial cultures: monochlorobimane provides evidence of cell type-specific distribution. Glia 27:152–161

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55:2091–2097

    Article  PubMed  CAS  Google Scholar 

  • Chretien F, Vallat-Decouvelaere AV, Bossuet C, Rimaniol AC, Le Grand R, Le Pavec G, Creminon C, Dormont D, Gray F, Gras G (2002) Expression of excitatory amino acid transporter-2 (EAAT-2) and glutamine synthetase (GS) in brain macrophages and microglia of SIVmac251-infected macaques. Neuropathol Appl Neurobiol 28:410–417

    Article  PubMed  CAS  Google Scholar 

  • Chretien F, Le Pavec G, Vallat-Decouvelaere AV, Delisle MB, Uro-Coste E, Ironside JW, Gambetti P, Parchi P, Creminon C, Dormont D, Mikol J, Gray F, Gras G (2004) Expression of excitatory amino acid transporter-1 (EAAT-1) in brain macrophages and microglia of patients with prion diseases. J Neuropathol Exp Neurol 63:1058–1071

    PubMed  CAS  Google Scholar 

  • Ciriolo MR, Palamara AT, Incerpi S, Lafavia E, Bue MC, De Vito P, Garaci E, Rotilio G (1997) Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem 272:2700–2708

    Article  PubMed  CAS  Google Scholar 

  • Clarke DD, Sokoloff L, Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (1999) Circulation and energy metabolism of the brain. In: Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia, pp 637–669

  • Conrad, Sato H (2011) The oxidative stress-inducible cystine/glutamate antiporter, system x c : cystine supplier and beyond. Amino Acids (this issue)

  • Cooper AJL, Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL, Kunk LM (1997) Glutathione in the brain: disorders of glutathione metabolism. In: The molecular and genetic basis of neurological disease. Butterworth-Heinemann, Boston, pp 1195–1230

  • Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R (2003) Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 307:282–290

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Dodd PR (2002) Excited to death: different ways to lose your neurones. Biogerontology 3:51–56

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  PubMed  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    Article  PubMed  CAS  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  PubMed  CAS  Google Scholar 

  • Farber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48:133–143

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Figiel M, Engele J (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 20:3596–3605

    PubMed  CAS  Google Scholar 

  • Finberg RW, Knipe DM, Kurt-Jones EA (2005) Herpes simplex virus and toll-like receptors. Viral Immunol 18:457–465

    Article  PubMed  CAS  Google Scholar 

  • Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S, Gelbard HA (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 271:15303–15306

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  • Frampton AR Jr, Goins WF, Nakano K, Burton EA, Glorioso JC (2005) HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 12:891–901

    Article  PubMed  CAS  Google Scholar 

  • Garaci E, Palamara AT, di Francesco P, Favalli C, Ciriolo MR, Rotilio G (1992) Glutathione inhibits replication and expression of viral proteins in cultured cells infected with Sendai virus. Biochem Biophys Res Commun 188:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Gebicke-Haerter PJ, Van Calker D, Norenberg W, Illes P (1996) Molecular mechanisms of microglial activation. A. Implications for regeneration and neurodegenerative diseases. Neurochem Int 29:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gegelashvili G, Schousboe A (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45:233–238

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  PubMed  CAS  Google Scholar 

  • Gras G, Porcheray F, Samah B, Leone C (2006) The glutamate-glutamine cycle as an inducible, protective face of macrophage activation. J Leukoc Biol 80:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Gras G, Samah B, Hubert A et al (2011) EEAT expression by macrophages and microglia: still more question than answers. Amino Acids (this issue)

  • Gutterer JM, Dringen R, Hirrlinger J, Hamprecht B (1999) Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. J Neurochem 73:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Had-Aissouni L (2011) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids (this issue)

  • Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8:1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Hansson E, Muyderman H, Leonova J, Allansson L, Sinclair J, Blomstrand F, Thorlin T, Nilsson M, Ronnback L (2000) Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int 37:317–329

    Article  PubMed  CAS  Google Scholar 

  • Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115:1–20

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    Article  PubMed  CAS  Google Scholar 

  • Hirrlinger J, Gutterer JM, Kussmaul L, Hamprecht B, Dringen R (2000) Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species. Dev Neurosci 22:384–392

    Article  PubMed  CAS  Google Scholar 

  • Homa FL, Brown JC (1997) Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7:107–122

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson J, Persson M, Hansson E, Ronnback L (2006) Corticosterone inhibits expression of the microglial glutamate transporter GLT-1 in vitro. Neuroscience 139:475–483

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin DW (2004) Neonatal herpes simplex infection. Clin Microbiol Rev 17:1–13

    Article  PubMed  Google Scholar 

  • Kondo K, Hashimoto H, Kitanaka J, Sawada M, Suzumura A, Marunouchi T, Baba A (1995) Expression of glutamate transporters in cultured glial cells. Neurosci Lett 188:140–142

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  • Leier I, Jedlitschky G, Buchholz U, Center M, Cole SP, Deeley RG, Keppler D (1996) ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 314(Pt 2):433–437

    PubMed  CAS  Google Scholar 

  • Leonova J, Thorlin T, Aberg ND, Eriksson PS, Ronnback L, Hansson E (2001) Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes. Am J Physiol Cell Physiol 281:C1495–C1503

    PubMed  CAS  Google Scholar 

  • Lewerenz J, Maher P, Methner A (2011) Regulation of xCT expression and system x c function in neuronal cells. Amino Acids (this issue)

  • Liao SL, Chen CJ (2001) Differential effects of cytokines and redox potential on glutamate uptake in rat cortical glial cultures. Neurosci Lett 299:113–116

    Article  PubMed  CAS  Google Scholar 

  • Lindenau J, Noack H, Asayama K, Wolf G (1998) Enhanced cellular glutathione peroxidase immunoreactivity in activated astrocytes and in microglia during excitotoxin induced neurodegeneration. Glia 24:252–256

    Article  PubMed  CAS  Google Scholar 

  • Lokensgard JR, Hu S, Sheng W, van Oijen M, Cox D, Cheeran MC, Peterson PK (2001) Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 7:208–219

    Article  PubMed  CAS  Google Scholar 

  • Lokensgard JR, Cheeran MC, Hu S, Gekker G, Peterson PK (2002) Glial cell responses to herpesvirus infections: role in defense and immunopathogenesis. J Infect Dis 186(Suppl 2):S171–S179

    Article  PubMed  Google Scholar 

  • Lopez-Redondo F, Nakajima K, Honda S, Kohsaka S (2000) Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res Mol Brain Res 76:429–435

    Article  PubMed  CAS  Google Scholar 

  • Macchia I, Palamara AT, Bue C, Savini P, Ciriolo M, Gaziano R, di Francesco P (1999) Increased replication of Sendai virus in morphine-treated epithelial cells: evidence for the involvement of the intracellular levels of glutathione. Int J Immunopharmacol 21:185–193

    Article  PubMed  CAS  Google Scholar 

  • Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL (2004) Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem 279:32869–32881

    Article  PubMed  CAS  Google Scholar 

  • Matis J, Kudelova M (2001) Early shutoff of host protein synthesis in cells infected with herpes simplex viruses. Acta Virol 45:269–277

    PubMed  CAS  Google Scholar 

  • McCullers DL, Sullivan PG, Scheff SW, Herman JP (2002) Traumatic brain injury regulates adrenocorticosteroid receptor mRNA levels in rat hippocampus. Brain Res 947:41–49

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  • Mossman KL, Macgregor PF, Rozmus JJ, Goryachev AB, Edwards AM, Smiley JR (2001) Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75:750–758

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4:1624–1633

    PubMed  CAS  Google Scholar 

  • Nakajima K, Tohyama Y, Kohsaka S, Kurihara T (2001) Ability of rat microglia to uptake extracellular glutamate. Neurosci Lett 307:171–174

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26:230–235

    Article  PubMed  Google Scholar 

  • Nawashiro H, Martin D, Hallenbeck JM (1997a) Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab 17:229–232

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997b) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Nakanishi H, Akaike N (1999) Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience 92:1465–1474

    Article  PubMed  CAS  Google Scholar 

  • O’Shea RD (2002) Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 29:1018–1023

    Article  PubMed  Google Scholar 

  • O’Shea RD, Lau CL, Farso MC, Diwakarla S, Zagami CJ, Svendsen BB, Feeney SJ, Callaway JK, Jones NM, Pow DV, Danbolt NC, Jarrott B, Beart PM (2006) Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: evidence for delayed up-regulation and redistribution of GLT-1. Neurochem Int 48:604–610

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  PubMed  CAS  Google Scholar 

  • Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D’Agostini C, di Francesco P, Favalli C, Rotilio G, Garaci E (1995) Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res 27:237–253

    Article  PubMed  CAS  Google Scholar 

  • Palamara AT, Perno CF, Aquaro S, Bue MC, Dini L, Garaci E (1996a) Glutathione inhibits HIV replication by acting at late stages of the virus life cycle. AIDS Res Hum Retroviruses 12:1537–1541

    Article  PubMed  CAS  Google Scholar 

  • Palamara AT, di Francesco P, Ciriolo MR, Bue C, Lafavia E, Rotilio G, Garaci E (1996b) Cocaine increases Sendai virus replication in cultured epithelial cells: critical role of the intracellular redox status. Biochem Biophys Res Commun 228:579–585

    Article  PubMed  CAS  Google Scholar 

  • Paulusma CC, van Geer MA, Evers R, Heijn M, Ottenhoff R, Borst P, Oude Elferink RP (1999) Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochem J 338(Pt 2):393–401

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Persson M (2007) Microglial Glutamate Transporters—Regulation of Expression and Possible Physiological Functions. Thesis, Vasastadens Bokbinderi AB, Göteborg. ISBN 978-91-628-7110-9. http://dx.doi.org/2077/4419

  • Persson M, Brantefjord M, Hansson E, Ronnback L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51:111–120

    Article  PubMed  Google Scholar 

  • Persson M, Sandberg M, Hansson E, Ronnback L (2006) Microglial glutamate uptake is coupled to glutathione synthesis and glutamate release. Eur J Neurosci 24:1063–1070

    Article  PubMed  Google Scholar 

  • Persson M, Brantefjord M, Liljeqvist JA, Bergstrom T, Hansson E, Ronnback L (2007) Microglial GLT-1 is upregulated in response to herpes simplex virus infection to provide an antiviral defence via glutathione. Glia 55:1449–1458

    Article  PubMed  Google Scholar 

  • Piehl F, Lidman O (2001) Neuroinflammation in the rat—CNS cells and their role in the regulation of immune reactions. Immunol Rev 184:212–225

    Article  PubMed  CAS  Google Scholar 

  • Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467

    Article  PubMed  CAS  Google Scholar 

  • Pogun S, Dawson V, Kuhar MJ (1994) Nitric oxide inhibits 3H-glutamate transport in synaptosomes. Synapse 18:21–26

    Article  PubMed  CAS  Google Scholar 

  • Porcheray F, Samah B, Leone C, Dereuddre-Bosquet N, Gras G (2006a) Macrophage activation and human immunodeficiency virus infection: HIV replication directs macrophages towards a pro-inflammatory phenotype while previous activation modulates macrophage susceptibility to infection and viral production. Virology 349:112–120

    Article  PubMed  CAS  Google Scholar 

  • Porcheray F, Leone C, Samah B, Rimaniol AC, Dereuddre-Bosquet N, Gras G (2006b) Glutamate metabolism in HIV-infected macrophages: implications for the CNS. Am J Physiol Cell Physiol 291:C618–C626

    Article  PubMed  CAS  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    Article  PubMed  CAS  Google Scholar 

  • Rebbeor JF, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat Mrp2. Biochim Biophys Acta 1559:171–178

    Article  PubMed  CAS  Google Scholar 

  • Richman PG, Meister A (1975) Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422–1426

    PubMed  CAS  Google Scholar 

  • Riedel G (1996) Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci 19:219–224

    Article  PubMed  CAS  Google Scholar 

  • Rimaniol AC, Haik S, Martin M, Le Grand R, Boussin FD, Dereuddre-Bosquet N, Gras G, Dormont D (2000) Na+-dependent high-affinity glutamate transport in macrophages. J Immunol 164:5430–5438

    PubMed  CAS  Google Scholar 

  • Rimaniol AC, Mialocq P, Clayette P, Dormont D, Gras G (2001) Role of glutamate transporters in the regulation of glutathione levels in human macrophages. Am J Physiol Cell Physiol 281:C1964–C1970

    PubMed  CAS  Google Scholar 

  • Romera C, Hurtado O, Botella SH, Lizasoain I, Cardenas A, Fernandez-Tome P, Leza JC, Lorenzo P, Moro MA (2004) In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci 24:1350–1357

    Article  PubMed  CAS  Google Scholar 

  • Ronnback L, Hansson E (2004) On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 1:22

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PA, Amin S, Leitner M (1992) Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 12:56–61

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes HM, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  • Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881

    Article  PubMed  CAS  Google Scholar 

  • Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173:699–703

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    Article  PubMed  CAS  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    PubMed  CAS  Google Scholar 

  • Schmutzhard E (2001) Viral infections of the CNS with special emphasis on herpes simplex infections. J Neurol 248:469–477

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H (2003) Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 26:297–302

    Article  PubMed  CAS  Google Scholar 

  • Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M (2005) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 92:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130

    Article  PubMed  CAS  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  • Skoldenberg B (1996) Herpes simplex encephalitis. Scand J Infect Dis Suppl 100:8–13

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    Article  PubMed  CAS  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959

    Article  PubMed  CAS  Google Scholar 

  • Stover JF, Schoning B, Beyer TF, Woiciechowsky C, Unterberg AW (2000) Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-alpha in relation to brain edema and contusion following controlled cortical impact injury in rats. Neurosci Lett 288:25–28

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ikegaya Y, Matsuura S, Kanai Y, Endou H, Matsuki N (2001) Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci 114:3717–3725

    PubMed  CAS  Google Scholar 

  • Swanson RA (1992) Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci Lett 147:143–146

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Farrell K, Simon RP (1995) Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J Cereb Blood Flow Metab 15:417–424

    Article  PubMed  CAS  Google Scholar 

  • Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM (1997) Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 748:267–270

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271:5976–5979

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL (2004) Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes 11(Suppl 2):57A–64A

    PubMed  Google Scholar 

  • Vallat-Decouvelaere AV, Chretien F, Gras G, Le Pavec G, Dormont D, Gray F (2003) Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia? J Neuropathol Exp Neurol 62:475–485

    PubMed  CAS  Google Scholar 

  • van Landeghem FK, Stover JF, Bechmann I, Bruck W, Unterberg A, Buhrer C, von Deimling A (2001) Early expression of glutamate transporter proteins in ramified microglia after controlled cortical impact injury in the rat. Glia 35:167–179

    Article  PubMed  Google Scholar 

  • Virgin CE Jr, Ha TP, Packan DR, Tombaugh GC, Yang SH, Horner HC, Sapolsky RM (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem 57:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74:457–471

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  • Watanabe H, Abe H, Takeuchi S, Tanaka R (2000) Protective effect of microglial conditioning medium on neuronal damage induced by glutamate. Neurosci Lett 289:53–56

    Article  PubMed  CAS  Google Scholar 

  • Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M, Shibata T, Tanaka K, Wada K, Inoue Y (1996) EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7:2013–2017

    Article  PubMed  CAS  Google Scholar 

  • Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, Behl C (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924–34932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work performed in the authors’ laboratory was supported by the Swedish Research Council, LUA/ALF from the Sahlgrenska University Hospital and Edit Jacobson’s Foundation. The article is a summary of the thesis of Mikael Persson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Rönnbäck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, M., Rönnbäck, L. Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 42, 207–219 (2012). https://doi.org/10.1007/s00726-011-0865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0865-7

Keywords

Navigation