Skip to main content

Interactions Between Neurons and Microglia During Neuroinflammation

  • Chapter
  • First Online:
Neuron-Glia Interaction in Neuroinflammation

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 7))

  • 1619 Accesses

Abstract

Microglia often accumulate around degenerating neurons. These macrophage-like immune cells produce a variety of neurotoxic and neuroprotective factors. Thus, the accumulation of glia in various neurologic disorders does not reflect only gliosis, but likely results in an active contribution to neuroinflammation, neural degeneration, and cell regeneration. We previously showed that glutamate is the most neurotoxic factor released by activated microglia, and suppressing glutamate release from microglia can inhibit disease progression in various animal models of neurodegenerative disorders. Interferon-γ (IFNγ) is also neurotoxic after binding to IFNγ receptor alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor complexes. On the other hand, when exposed to harmful stimuli, neurons also produce and release various factors that serve as “help-me” signals. For example, the CX3C chemokine fractalkine, interleukin-34, and fibroblast growth factor-2 are secreted from damaged neurons; these help-me signals induce various microglial activities to rescue neurons, including upregulated phagocytosis of toxicants and damaged debris, and production of antioxidant enzymes and other neurotrophic factors. Elucidating the interactions between neurons and microglia will help uncover the mechanisms underlying chronic neuroinflammatory conditions, and may provide insights into new therapeutic strategies for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    Article  PubMed  CAS  Google Scholar 

  • Boehme SA, Lio FM, Maciejewski-Lenoir D et al (2000) The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 165(1):397–403

    PubMed  CAS  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587(2):250–256

    Article  PubMed  CAS  Google Scholar 

  • Bruce AJ, Boling W, Kindy MS, Kraemer PJ, Carpenter MK, Holtsber FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2(7):788–794

    Article  PubMed  CAS  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    Article  PubMed  CAS  Google Scholar 

  • Clark AK, Yip PK, Grist J et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104(25):10655–10660

    Article  PubMed  CAS  Google Scholar 

  • El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol Sci 29(12):626–632

    Article  PubMed  Google Scholar 

  • Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, Beckman JS (1998) Nitric oxide and superoxide contribute to motor neuron apoptosis induce by trophic factor deprivation. J Neurosci 18(3):923–931

    PubMed  CAS  Google Scholar 

  • Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med 12(3):762–780

    Article  PubMed  CAS  Google Scholar 

  • Flavin MP, Zhao G, Ho LT (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29(4):347–358

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Bittner T, Jung CK et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13(4):411–413

    Article  PubMed  CAS  Google Scholar 

  • Fuller AD, Van Eldik LJ (2008) MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol 3(4):246–256

    Article  PubMed  Google Scholar 

  • Garton KJ, Gough PJ, Blobel CP et al (2001) Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276(41):37993–38001

    PubMed  CAS  Google Scholar 

  • Green SR, Han KH, Chen Y et al (2006) The CC chemokine MCP-1 stimulates surface expression of CX3CR1 and enhances the adhesion of monocytes to fractalkine/CX3CL1 via p38 MAPK. J Immunol 176(12):7412–7420

    PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901

    Article  PubMed  CAS  Google Scholar 

  • Hatori K, Nagai A, Heisel R et al (2002) Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res 69(3):418–426

    Article  PubMed  CAS  Google Scholar 

  • Hoarau JJ, Krejbich-Trotot P, Jaffar-Bandjee MC et al (2011) Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg). CNS Neurol Disord Drug Targets 10(1):25–43

    Article  PubMed  CAS  Google Scholar 

  • Honda S, Sasaki Y, Ohsawa K et al (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    PubMed  CAS  Google Scholar 

  • Horvath RJ, DeLeo LA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29(4):998–1005

    Article  PubMed  CAS  Google Scholar 

  • Hundhausen C, Misztela D, Berkhout TA et al (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102(4):1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Landreth GE, Reed-Geaghan EG (2009) Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol 336:137–153

    Article  PubMed  CAS  Google Scholar 

  • Leonardi-Essmann F, Emig M, Kitamura Y, Spanagel R, Gebicke-Haeter PJ (2005) Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia. J Neuroimmunol 160:92–101

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Walter S, Stagi M et al (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 128(8):1778–1789

    Article  PubMed  Google Scholar 

  • McArthur S, Cristante E, Paterno M et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185(10):6317–6328

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villaba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Kawanokuchi J, Numata K et al (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1–2):65–70

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Zhang G, Takeuchi H et al (2008) Interferon-gamma directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-gamma and AMPA GluR1 receptor. FASEB J 22(6):1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Doi Y, Mizoguchi H, Jin S, Noda M, Sonobe Y, Takeuchi H, Suzumura A (2011) Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-β neurotoxicity. Am J Pathol 179(4):2016–2027

    Article  PubMed  CAS  Google Scholar 

  • Nishiyori A, Minami M, Ohtani Y et al (1998) Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 429(2):167–172

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Doi Y, Liang J et al (2011) Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286(3):2308–2319

    Article  PubMed  CAS  Google Scholar 

  • Pabon MM, Bachstetter AD, Hudson CE et al (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Lloyd C, Zhou H et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387(6633):611–617

    Article  PubMed  CAS  Google Scholar 

  • Rothwell N, Allan S, Toulmond S (1977) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest 100(11):2648–2652

    Article  Google Scholar 

  • Sambrano GR, Steinberg D (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci U S A 92(5):1396–1400

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2657

    PubMed  CAS  Google Scholar 

  • Stolzing A, Grune T (2004) Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. FASEB J 18(6):743–745

    PubMed  CAS  Google Scholar 

  • Strijbos PJ, Rothwell NJ (1995) Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J Neurosci 15:3468–3474

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Mizoguchi H, Doi Y et al (2011) Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. PLoS One 6(6):e21108

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Sotomatsu A, Yoshida T, Hirai S, Nishida A (1994) Detection of superoxide production by activated microglia using sensitive and specific chemiluminescence assay and microglia-mediated PC12h cell death. J Neurochem 63(1):266–270

    Article  PubMed  CAS  Google Scholar 

  • Tran PB, Miller RJ (2003) Chemokine receptors in the brain: a developing story. Nat Rev Neurosci 4(6):444–455

    Article  PubMed  CAS  Google Scholar 

  • Tsou CL, Haskell CA, Charo IF (2001) Tumor necrosis factor-α-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276(48):44622–44626

    Article  PubMed  CAS  Google Scholar 

  • Yeh MW, Kaul M, Zheng J, Nottet HS, Thylin M, Gendelman HE, Lipton SA (2000) Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l-cysteine. J Immunol 164(8):4265–4270

    PubMed  CAS  Google Scholar 

  • Zhong X, Min W, Morgan TE et al (2002) Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J Neurosci 22:3484–3492

    Google Scholar 

  • Zujovic V, Benavides J, Vige X et al (2000) Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Global COE program “Integrated Functional Molecular Medicine for Neuronal and Neoplastic Disorders,” which is funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Program for Promotion of Fundamental Studies in Health Sciences from the National Institute of Biomedical Innovation (NIBIO).

Conflicts of interest The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Suzumura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suzumura, A. (2013). Interactions Between Neurons and Microglia During Neuroinflammation. In: Suzumura, A., Ikenaka, K. (eds) Neuron-Glia Interaction in Neuroinflammation. Advances in Neurobiology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8313-7_4

Download citation

Publish with us

Policies and ethics