Skip to main content
Log in

Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The dynamic, intracellular, O-GlcNAc modification is of continuing interest and one whose study through targeted “chemical genetics” approaches is set to increase. Of particular importance is the inhibition of the O-GlcNAc hydrolase, O-GlcNAcase (OGA), since this provides a route to elevate cellular O-GlcNAc levels, and subsequent phenotypic evaluation. Such a small molecule approach complements other methods and potentially avoids changes in protein–protein interactions that manifest themselves in molecular biological approaches to O-GlcNAc transferase knockout or over-expression. Here we describe the kinetic, thermodynamic and three-dimensional structural analysis of a bacterial OGA analogue from Bacteroides thetaiotaomicron, BtGH84, in complex with a lactone oxime (LOGNAc) and a lactam form of N-acetylglucosamine and compare their binding signatures with that of the more potent inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc). We show that both LOGNAc and the N-acetyl gluconolactam are significantly poorer inhibitors than PUGNAc, which may reflect poorer mimicry of transition state geometry and steric clashes with the enzyme upon binding; drawbacks that the phenyl carbamate adornment of PUGNAc helps mitigate. Implications for the design of future generations of inhibitors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar-Moncayo M, Gloster TM, Turkenburg JP, García-Moreno MI, Ortiz Mellet C, Davies GJ, Fernádez G (2009) Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring. Org Biomol Chem 7:2738–2747

    Article  CAS  PubMed  Google Scholar 

  • Akimoto Y, Hart GW, Wells L, Vosseller K, Yamamoto K, Munetomo E, Ohara-Imaizumi M, Nishiwaki C, Nagamatsu S, Hirano H et al (2007) Elevation of the post-translational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats. Glycobiology 17:127–140

    Article  CAS  PubMed  Google Scholar 

  • Arias EB, Kim J, Cartee GD (2004) Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 53:921–930

    Article  CAS  PubMed  Google Scholar 

  • Balcewich MD, Stubbs KA, He Y, James TW, Davies GJ, Vocadlo DJ, Mark BL (2009) Insight into a strategy for attenuating AmpC-mediated β-lactam resistance: structural basis for selective inhibition of the glycoside hydrolase NagZ. Prot Sci 18:1541–1551

    Article  CAS  Google Scholar 

  • Beer D, Vasella A (1985) Aldonhydroximo-lactones—preparation and determination of configuration. Helv Chim Acta 68:2254–2274

    Article  CAS  Google Scholar 

  • Beer D, Vasella A (1986) Inhibition of emulsion by d-gluconhydroximo-1,5-lactone and related compounds. Helv Chim Acta 69:267–270

    Article  CAS  Google Scholar 

  • Beer D, Maloisel JL, Rast DM, Vasella A (1990) Synthesis of 2-acetamido-2-deoxy-d-gluconhydroximolactone-derived and chitobionhydroximolactone-derived N-phenylcarbamates, potential inhibitors of beta-N-acetylglucosaminidase. Helv Chim Acta 73:1918–1922

    Article  CAS  Google Scholar 

  • Butkinaree C, Park K, Hart GW (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800:96–106

    CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Hart GW (2001) O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. Adv Exp Med Biol 491:413–418

    CAS  PubMed  Google Scholar 

  • Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D50:760–763

    Google Scholar 

  • Combes CL, Birch GG (1988) Interaction of d-glucono-1,5-lactone with water. Food Chem 27:283–298

    Article  CAS  Google Scholar 

  • Conchie J, Levvy GA (1957) Inhibition of glycosidases by aldonolactones of corresponding configuration. Biochem J 65:389–395

    CAS  PubMed  Google Scholar 

  • Davies GJ, Martinez-Fleites C (2010) The O-GlcNAc modification: 3-D structure, enzymology and the development of selective inhibitors to probe disease. Biochem Soc Trans (in press)

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559

    CAS  PubMed  Google Scholar 

  • Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, Davies GJ (2006) Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol 13:365–371

    Article  CAS  PubMed  Google Scholar 

  • Dias WB, Hart GW (2007) O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol Biosyst 3:766–772

    Article  CAS  PubMed  Google Scholar 

  • Donadio AC, Lobo C, Tosina M, de la Rosa V, Martin-Rufian M, Campos-Sandoval JA, Mates JM, Marquez J, Alonso FJ, Segura JA (2008) Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 103:800–811

    Article  CAS  PubMed  Google Scholar 

  • Dong DL, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J Biol Chem 269:19321–19330

    CAS  PubMed  Google Scholar 

  • Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DM (2006) GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels. J Am Chem Soc 128:16484–16485

    Article  CAS  PubMed  Google Scholar 

  • Dorfmueller HC, Borodkin VS, Schimpl M, van Aalten DM (2009) GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation. Biochem J 420:221–227

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D60:2126–2132

    CAS  Google Scholar 

  • Fleet GWJ, Carpenter NM, Petursson S, Ramsden NG (1990) Synthesis of deoxynojirimycin and of nojirimycin delta-lactam. Tetrahedron Lett 31:409–412

    Article  CAS  Google Scholar 

  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276:9838–9845

    Article  CAS  PubMed  Google Scholar 

  • Gloster TM, Davies GJ (2010) Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem 8:305–320

    Article  CAS  PubMed  Google Scholar 

  • Gloster TM, Meloncelli P, Stick R, Zechel D, Vasella A, Davies GJ (2007) Glycosidase inhibition: an assessment of the binding of eighteen putative transition-state mimics. J Am Chem Soc 129:2345–2354

    Article  CAS  PubMed  Google Scholar 

  • Granier T, Vasella A (1998) Synthesis and some transformations of 2-acetamido-5-amino-3,4,6-tri-O-benzyl-2,5-dideoxy-d-glucono-1, 5-lactam. Helv Chim Acta 81:865–880

    Article  CAS  Google Scholar 

  • Griffith LS, Schmitz B (1995) O-linked N-acetylglucosamine is upregulated in Alzheimer brains. Biochem Biophys Res Commun 213:424–431

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • He Y, Martinez-Fleites C, Bubb A, Gloster TM, Davies GJ (2009) Structural insight into the mechanism of streptozotocin inhibition of O-GlcNAcase. Carbohydr Res 344:627–631

    Article  CAS  PubMed  Google Scholar 

  • He Y, Macauley MS, Stubbs KA, Vocadlo DJ, Davies GJ (2010) Visualizing the reaction coordinate of an O-GlcNAc hydrolase. J Am Chem Soc 132:1807–1809

    Article  CAS  PubMed  Google Scholar 

  • Heightman TD, Vasella AT (1999) Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angew Chem Int Ed 38:750–770

    Article  CAS  Google Scholar 

  • Hoos R, Naughton AB, Thiel W, Vasella A, Weber W, Rupitz K, Withers SG (1993) d-Gluconhydroximo-1, 5-lactam and related N-arylcarbamates—theoretical calculations, structure, synthesis, and inhibitory effect on beta-glucosidases. Helv Chim Acta 76:2666–2686

    Article  CAS  Google Scholar 

  • Horsch M, Hoesch L, Vasella A, Rast DM (1991) N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime novel and potent inhibitors of beta-N-acetylglucosaminidase. Eur J Biochem 197:815–818

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, de Gori R, Smith BJ, Vasella A, Vargese JN, Fincher GB (2004) Three-dimensional structure of the barley β-d-glucan glucohydrolase in complex with a transition state mimic. J Biol Chem 279:4970–4980

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Streltsov VA, Smith BJ, Vasella A, Vargese JN, Fincher GB (2005) Structural rationale for low-nanomolar binding of transition state mimics to a family GH3 β-d-glucan glucohydrolase from barley. Biochemistry 44:16529–16539

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Guerrero R, Dorfmueller HC, van Aalten DM (2008) Molecular mechanisms of O-GlcNAcylation. Curr Opin Struct Biol 18:551–557

    Article  CAS  PubMed  Google Scholar 

  • Inouye S, Tsuruoka T, Ito T, Niida T (1968) Structure and synthesis of nojirimycin. Tetrahedron 24:2125

    Article  CAS  PubMed  Google Scholar 

  • Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  CAS  PubMed  Google Scholar 

  • Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274:32015–32022

    Article  CAS  PubMed  Google Scholar 

  • Kroncke KD, Fehsel K, Sommer A, Rodriguez ML, Kolb-Bachofen V (1995) Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler 376:179–185

    CAS  PubMed  Google Scholar 

  • Lalegerie P, Legler G, Yon JM (1982) The use of inhibitors in the study of glycosidases. Biochimie 64:977–1000

    Article  CAS  PubMed  Google Scholar 

  • Leaback DH (1968) On the inhibition of beta-N-acetyl-d-glucosaminidase by 2-acetamido-2-deoxy-d-glucono-(1,5)-lactone. Biochem Biophys Res Commun 32:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre T, Dehennaut V, Guinez C, Olivier S, Drougat L, Mir A-M, Mortuaire M, Vercoutter-Edouart A-S, Michalski J-C (2010) Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1800:67–79

    CAS  PubMed  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809

    Article  CAS  PubMed  Google Scholar 

  • Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275:10983–10988

    Article  CAS  PubMed  Google Scholar 

  • Macauley MS, Vocadlo DJ (2010) Increasing O-GlcNAc levels: an overview of small-molecule inhibitors of O-GlcNAcase. Biochim Biophys Acta 1800:107–121

    CAS  PubMed  Google Scholar 

  • Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 280:25313–25322

    Article  CAS  PubMed  Google Scholar 

  • Macauley MS, Bubb AK, Martinez-Fleites C, Davies GJ, Vocadlo DJ (2008) Elevation of global O-GlcNAc levels in 3T3-L1 adipocytes by selective inhibition of O-GlcNAcase does not induce insulin resistance. J Biol Chem 283:34687–34695

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Marcelo F, He Y, Yuzwa SA, Nieto L, Jiménez-Barbero J, Sollogoub M, Vocadlo DJ, Davies GJ, Blériot Y (2009) Molecular basis for inhibition of GH84 glycoside hydrolases by substituted azepanes: conformational flexibility enables probing of substrate distortion. J Am Chem Soc 131:5390–5392

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fleites C, He Y, Davies GJ (2010) Structural analyses of enzymes involved in the O-GlcNAc modification. Biochim Biophys Acta 1800:122–133

    CAS  PubMed  Google Scholar 

  • McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC, Hanover JA (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci USA 99:10695–10699

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Gong X, Shur BD (1993) Sperm require beta-N-acetylglucosaminidase to penetrate through the egg zona pellucida. Development 118:1279–1289

    CAS  PubMed  Google Scholar 

  • Mohan H, Vasella A (2000) An improved synthesis of 2-acetamido-2-deoxy-d-gluconohydroximolactone (PUGNAc), a strong inhibitor of beta-N-acetylglucosaminidases. Helv Chim Acta 83:114–118

    Article  CAS  Google Scholar 

  • Nishimura Y, Adachi H, Satoh T, Shitara E, Nakamura H, Kojima F, Takeuchi T (2000) All eight stereoisomeric d-glyconic-delta-lactams: synthesis, conformational analysis, and evaluation as glycosidase inhibitors. J Org Chem 65:4871–4882

    Article  CAS  PubMed  Google Scholar 

  • Olszewski NE, West CM, Sassi SO, Hartweck LM (2010) O-GlcNAc protein modification in plants: evolution and function. Biochim Biophys Acta 1800:49–56

    CAS  PubMed  Google Scholar 

  • Overkleeft HS, Vanwiltenburg J, Pandit UK (1993) An expedient stereoselective synthesis of gluconolactam. Tetrahedron Lett 34:2527–2528

    Article  CAS  Google Scholar 

  • Papageorgiou AC, Oikonomakos NG, Leonidas DD, Bernet B, Beer D, Vasella A (1991) The binding of d-gluconohydroximo-1,5-lactone to glycogen-phosphorylase—kinetic, ultracentrifugation and crystallographic studies. Biochem J 274:329–338

    CAS  PubMed  Google Scholar 

  • Pathak S, Dorfmueller HC, Borodkin VS, van Aalten DM (2008) Chemical dissection of the link between streptozotocin, O-GlcNAc, and pancreatic cell death. Chem Biol 15:799–807

    Article  CAS  PubMed  Google Scholar 

  • Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News 24:1375–1377

    Article  CAS  Google Scholar 

  • Rao FV, Dorfmueller HC, Villa F, Allwood M, Eggleston IM, van Aalten DM (2006) Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J 25:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Reese ET, Parrish FW, Ettlinger M (1971) Nojirimycin and d-glucono-1,5-lactone as inhibitors of carbohydrases. Carbohydr Res 18:381–388

    Article  CAS  Google Scholar 

  • Scaffidi A, Stubbs KA, Dennis RJ, Taylor EJ, Davies GJ, Vocadlo DJ, Stick RV (2007) A 1-acetamido derivative of 6-epivalienamine: an inhibitor of a diverse array of β-N-acetylglucosaminidases. Org Biomol Chem 5:3013–3019

    Article  CAS  PubMed  Google Scholar 

  • Shanmugasundaram B, Debowski AW, Dennis RJ, Davies GJ, Vocadlo DJ, Vasella A (2006) Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc–imidazole hybrid inhibitor. Chem Commun 4372–4374

  • Stubbs KA, Zhang N, Vocadlo DJ (2006) A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org Biomol Chem 4:839–845

    Article  CAS  PubMed  Google Scholar 

  • Tailford LN, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck M-P, Stick RV, Blériot Y, Vasella A et al (2008) Structural and biochemical evidence for a boat-like transition state in β-mannosidases. Nat Chem Biol 4:306–312

    Article  CAS  PubMed  Google Scholar 

  • Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    CAS  PubMed  Google Scholar 

  • Vasella A, Davies G, Böhm M (2002) Glycosidase mechanisms. Curr Opin Chem Biol 6:619–629

    Article  CAS  PubMed  Google Scholar 

  • Vocadlo D, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555

    Article  CAS  PubMed  Google Scholar 

  • Vosseller K, Wells L, Lane MD, Hart GW (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 99:5313–5318

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  CAS  PubMed  Google Scholar 

  • Winn MD, Isupov MN, Murshudov GN (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D 57:122–133

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature 294:284–286

    Article  CAS  PubMed  Google Scholar 

  • Yao PJ, Coleman PD (1998) Reduction of O-linked N-acetylglucosamine-modified assembly protein-3 in Alzheimer’s disease. J Neurosci 18:2399–2411

    CAS  PubMed  Google Scholar 

  • Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ et al (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4:483–490

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Yang S, Hu S, Chaudry IH, Marchase RB, Chatham JC (2007) The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock 27:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Biotechnology and Biological Sciences Research Council for their funding. G. J. D. is a Royal Society Wolfson Research Merit Award recipient. Y. H. was partially supported by the Wild Fund of the Department of Chemistry at York. T. M. G. is a Sir Henry Wellcome Postdoctoral Fellow, funded by the Wellcome Trust. Professor Andrea Vasella (ETH Zürich) is thanked for provision of N-acetyl gluconolactam 3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tracey M. Gloster or Gideon J. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Bubb, A.K., Stubbs, K.A. et al. Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses. Amino Acids 40, 829–839 (2011). https://doi.org/10.1007/s00726-010-0700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0700-6

Keywords

Navigation