Skip to main content

Advertisement

Log in

100% protein sequence coverage: a modern form of surrealism in proteomics

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This review intends not only to discuss the current possibilities to gain 100% sequence coverage for proteins, but also to point out the critical limits to such an attempt. The aim of 100% sequence coverage, as the review title already implies, seems to be rather surreal if the complexity and dynamic range of a proteome is taken into consideration. Nevertheless, established bottom-up shotgun approaches are able to roughly identify a complete proteome as exemplary shown by yeast. However, this proceeding ignores more or less the fact that a protein is present as various protein species. The unambiguous identification of protein species requires 100% sequence coverage. Furthermore, the separation of the proteome must be performed on the protein species and not on the peptide level. Therefore, top-down is a good strategy for protein species analysis. Classical 2D-electrophoresis followed by an enzymatic or chemical cleavage, which is a combination of top-down and bottom-up, is another interesting approach. Moreover, the review summarizes further top-down and bottom-up combinations and to which extent middle-down improves the identification of protein species. The attention is also focused on cleavage strategies other than trypsin, as 100% sequence coverage in bottom-up experiments is only obtainable with a combination of cleavage reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ablonczy Z, Crouch RK, Knapp DR (2005) Mass spectrometric analysis of integral membrane proteins at the subpicomolar level: application to rhodopsin. J Chromatogr B Analyt Technol Biomed Life Sci 825:169–175

    PubMed  CAS  Google Scholar 

  • Ayaz-Guner S, Zhang J, Li L, Walker JW, Ge Y (2009) In vivo phosphorylation site mapping in mouse cardiac troponin I by high resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. Biochemistry 48:8161–8170

    PubMed  CAS  Google Scholar 

  • Bendz M, Möller MC, Arrigoni G, Wahlander A, Stella R, Cappadona S, Levander F, Hederstedt L, James P (2008) Quantification of membrane proteins using nonspecific protease digestions. J Proteome Res 8:5666–5673

    Google Scholar 

  • Biringer RG, Amato H, Harrington MG, Fonteh AN, Riggins JN, Hühmer AF (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC–MS/MS. Brief Funct Genomic Proteomic 5:144–153

    PubMed  CAS  Google Scholar 

  • Blackler AR, Speers AE, Wu CC (2008a) Chromatographic benefits of elevated temperature for the proteomic analysis of membrane proteins. Proteomics 8:3956–3964

    PubMed  CAS  Google Scholar 

  • Blackler AR, Speers AE, Ladinsky MS, Wu CC (2008b) A shotgun proteomic method for the identification of membrane-embedded proteins and peptides. J Proteome Res 7:3028–3034

    PubMed  CAS  Google Scholar 

  • Blonder J, Conrads TP, Yu LR, Terunuma A, Janini GM, Issaq HJ, Vogel JC, Veenstra TD (2004) A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics 4:31–45

    PubMed  CAS  Google Scholar 

  • Boersema PJ, Taouatas N, Altelaar AF, Gouw JW, Ross PL, Pappin DJ, Heck AJ, Mohammed S (2009) Straightforward and de novo peptide sequencing by MALDI-MS/MS using a Lys-N metalloendopeptidase. Mol Cell Proteomics 8:650–660

    PubMed  CAS  Google Scholar 

  • Bondarenko PV, Second TP, Zabrouskov V, Makarov A, Zhang Z (2009) Mass measurement and top-down HPLC/MS analysis of intact monoclonal antibodies on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. J Am Soc Mass Spectrom 20:1415–1424

    PubMed  CAS  Google Scholar 

  • Bornemann S, Rietschel B, Baltruschat S, Karas M, Meyer B (2010) A novel polyacrylamide gel system for proteomic use offering controllable pore expansion by crosslinker cleavage. Electrophoresis 31:585–592

    PubMed  CAS  Google Scholar 

  • Boschetti E, Righetti PG (2009) The art of observing rare protein species in proteomes with peptide ligand libraries. Proteomics 9:1492–1510

    PubMed  CAS  Google Scholar 

  • Boyne MT, Garcia BA, Li M, Zamdborg L, Wenger CD, Babai S, Kelleher NL (2009) Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval. J Proteome Res 8:374–379

    PubMed  CAS  Google Scholar 

  • Breuker K, Jin M, Han X, Jiang H, McLafferty FW (2008) Top-down identification and characterization of biomolecules by mass spectrometry. J Am Soc Mass Spectrom 19:1049–1053

    Google Scholar 

  • Capelo JL, Carreira R, Diniz M, Fernandes L, Galesio M, Lodeiro C, Santos HM, Vale G (2009) Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta 650:151–159

    PubMed  CAS  Google Scholar 

  • Cech NB, Enke CG (2000) Relating electrospray ionization response to nonpolar character of small peptides. Anal Chem 72:2717–2723

    PubMed  CAS  Google Scholar 

  • Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8:651–661

    PubMed  CAS  Google Scholar 

  • Chen WQ, Priewalder H, John JP, Lubec G (2010) Silk cocoon of Bombyx mori: proteins and posttranslational modifications-heavy phosphorylation and evidence for lysine-mediated cross links. Proteomics 10:369–379

    PubMed  CAS  Google Scholar 

  • Chmelik J, Zidkova J, Rehulka P, Petry-Podgorska I, Bobalova J (2009) Influence of different proteomic protocols on degree of high-coverage identification of nonspecific lipid transfer protein 1 modified during malting. Electrophoresis 30:560–567

    PubMed  CAS  Google Scholar 

  • Choudhary G, Wu SL, Shieh P, Hancock WS (2003) Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J Proteome Res 2:59–67

    PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398

    PubMed  CAS  Google Scholar 

  • Crimmins DL, Mische SM, Denslow ND (2001) Chemical cleavage of proteins on membranes, Chap 11. Curr Protoc Protein Sci Unit 11.5

  • Crimmins DL, Mische SM, Denslow ND (2005) Chemical cleavage of proteins in solution, Chap 11. Curr Protoc Protein Sci Unit 11.4

  • de Godoy LMF, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7:R50

    PubMed  Google Scholar 

  • de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254

    PubMed  Google Scholar 

  • Distler AM, Kerner J, Peterman SM, Hoppel CL (2006) A targeted proteomic approach for the analysis of rat liver mitochondrial outer membrane proteins with extensive sequence coverage. Anal Biochem 356:18–29

    PubMed  CAS  Google Scholar 

  • Dumont JE, Dremier S, Pirson I, Maenhaut C (2002) Cross signaling, cell specificity, and physiology. Am J Physiol Cell Physiol 283:C2–C28

    PubMed  CAS  Google Scholar 

  • Eliuk SM, Maltby D, Panning B, Burlingame AL (2010) High resolution electron transfer dissociation (ETD) studies of unfractionated intact histones from murine embryonic stem cells using online capillary LC separation: determination of abundant histone isoforms and post-translational modifications. Mol Cell Proteomics 9:824–837

    Google Scholar 

  • Ernoult E, Gamelin E, Guette C (2008) Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. Proteome Sci 6:27

    Google Scholar 

  • Fischer F, Poetsch A (2006) Protein cleavage strategies for an improved analysis of the membrane proteome. Proteome Sci 4:2

    PubMed  Google Scholar 

  • Fischer F, Wolters D, Rögner M, Poetsch A (2006) Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5:444–453

    PubMed  CAS  Google Scholar 

  • Forbes AJ, Mazur MT, Patel HM, Walsh CT, Kelleher NL (2001) Toward efficient analysis of >70 kDa proteins with 100% sequence coverage. Proteomics 1:927–933

    PubMed  CAS  Google Scholar 

  • Frahm JL, Bori ID, Comins DL, Hawkridge AM, Muddiman DC (2007) Achieving augmented limits of detection for peptides with hydrophobic alkyl tags. Anal Chem 79:3989–3995

    PubMed  CAS  Google Scholar 

  • Freemont PS, Dunbar B, Fothergill-Gilmore LA (1988) The complete amino acid sequence of human skeletal-muscle fructose-bisphosphate aldolase. Biochem J 249:779–788

    PubMed  CAS  Google Scholar 

  • Galkin A, Meyer B, Wittig I, Karas M, Schägger H, Vinogradov A, Brandt U (2008) Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem 283:20907–20913

    PubMed  CAS  Google Scholar 

  • Garcia BA (2010) What does the future hold for top down mass spectrometry? J Am Soc Mass Spectrom 21:193–202

    PubMed  CAS  Google Scholar 

  • Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL (2007) Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4:487–489

    PubMed  CAS  Google Scholar 

  • Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81:4493–4501

    PubMed  CAS  Google Scholar 

  • Getie-Kebtie M, Franke P, Aksamit R, Alterman MA (2008) Experimental evaluation of protein identification by an LC/MALDI/on-target digestion approach. J Proteome Res 7:3697–3707

    PubMed  CAS  Google Scholar 

  • Godovac-Zimmermann J, Kleiner O, Brown LR, Drukier AK (2005) Perspectives in spicing up proteomics with splicing. Proteomics 5:699–709

    PubMed  CAS  Google Scholar 

  • Görg A, Drews O, Lück C, Weiland F, Weiss W (2009) 2-DE with IPGs. Electrophoresis 30:S122–S132

    Google Scholar 

  • Han J, Schey KL (2004) Proteolysis and mass spectrometric analysis of an integral membrane: aquaporin 0. J Proteome Res 3:807–812

    PubMed  CAS  Google Scholar 

  • Han KK, Richard C, Biserte G (1982) Current developments of chemical cleavage of proteins. Int J Biochem 15:875–884

    Google Scholar 

  • Han X, Jin M, Breuker K, McLafferty FW (2006) Extending Top-Down Mass Spectrometry to Proteins with Masses Greater than 200 Kilodaltons. Science 314:109–112

    PubMed  CAS  Google Scholar 

  • Harris WA, Reilly JP (2002) On-probe digestion of bacterial proteins for MALDI-MS. Anal Chem 74:4410–4416

    PubMed  CAS  Google Scholar 

  • Hauser NJ, Basile F (2008) Online microwave D-cleavage LC–ESI-MS/MS of intact proteins: site-specific cleavages at aspartic acid residues and disulfide bonds. J Proteome Res 7:1012–1026

    PubMed  CAS  Google Scholar 

  • Hauser NJ, Han H, McLuckey SA, Basile F (2008) Electron transfer dissociation of peptides generated by microwave D-cleavage digestion of proteins. J Proteome Res 7:1867–1872

    PubMed  CAS  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    PubMed  CAS  Google Scholar 

  • Hellman U, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:451–455

    PubMed  CAS  Google Scholar 

  • Hennrich ML, Boersema PJ, van den Toorn H, Mischerikow N, Heck AJ, Mohammed S (2009) Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Anal Chem 81:7814–7822

    PubMed  CAS  Google Scholar 

  • Hoehenwarter W, Ackermann R, Zimny-Arndt U, Kumar NM, Jungblut PR (2006) The necessity of functional proteomics: protein species and molecular function elucidation exemplified by in vivo alpha A crystallin N-terminal truncation. Amino Acids 31:317–323

    PubMed  CAS  Google Scholar 

  • Horn DM, Ge Y, McLafferty FW (2000) Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal Chem 72:4778–4784

    PubMed  CAS  Google Scholar 

  • Inglis AS (1983) Cleavage at aspartic acid. Methods Enzymol 91:324–332

    PubMed  CAS  Google Scholar 

  • Irungu J, Go EP, Zhang Y, Dalpathado DS, Liao HX, Haynes BF, Desaire H (2008) Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. J Am Soc Mass Spectrom 19:1209–1220

    PubMed  CAS  Google Scholar 

  • Iwasaki M, Masuda T, Tomita M, Ishihama Y (2009) Chemical cleavage-assisted tryptic digestion for membrane proteome analysis. J Proteome Res 8:3169–3175

    PubMed  CAS  Google Scholar 

  • Jansson M, Warell K, Levander F, James P (2008) Membrane protein identification: N-terminal labeling of nontryptic membrane protein peptides facilitates database searching. J Proteome Res 7:659–665

    PubMed  CAS  Google Scholar 

  • Jaskolla TW, Lehmann WD, Karas M (2008) 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. Proc Natl Acad Sci USA 105:12200–12205

    PubMed  CAS  Google Scholar 

  • Jaskolla TW, Papasotiriou DG, Karas M (2009) Comparison between the matrices alpha-cyano-4-hydroxycinnamic acid and 4-chloro-alpha-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry. J Proteome Res 8:3588–3597

    PubMed  CAS  Google Scholar 

  • John JP, Anrather D, Pollak A, Lubec G (2006) Mass spectrometrical verification of stomatin-like protein 2 (SLP-2) primary structure. Proteins 64:543–551

    PubMed  CAS  Google Scholar 

  • Jungblut PR, Thiede B, Zimny-Arndt U, Muller EC, Scheler C, Wittmann-Liebold B, Otto A (1996) Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis 17:839–847

    PubMed  CAS  Google Scholar 

  • Jungblut PR, Holzhütter HG, Apweiler R, Schlüter H (2008) The speciation of the proteome. Chem Cent J 2:16

    PubMed  Google Scholar 

  • Kachman MT, Wang H, Schwartz DR, Cho KR, Lubman DM (2002) A 2-D liquid separations/mass mapping method for interlysate comparison of ovarian cancers. Anal Chem 74:1779–1791

    PubMed  CAS  Google Scholar 

  • Karabacak NM, Li L, Tiwari A, Hayward LJ, Hong P, Easterling ML, Agar JN (2009) Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top down mass spectrometry. Mol Cell Proteomics 8:846–856

    PubMed  CAS  Google Scholar 

  • Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW (1999) Top-down versus bottom-up protein characterization by tandem high resolution mass spectrometry. J Am Chem Soc 121:806–812

    CAS  Google Scholar 

  • Khatun J, Ramkissoon K, Giddings MC (2007) Fragmentation characteristics of collision-induced dissociation in MALDI TOF/TOF mass spectrometry. Anal Chem 79:3032–3040

    PubMed  CAS  Google Scholar 

  • Kjellström S, Jensen ON (2004) Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins. Anal Chem 76:5109–5117

    PubMed  Google Scholar 

  • Krause E, Wenschuh H, Jungblut PR (1999) The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 71:4160–4165

    PubMed  CAS  Google Scholar 

  • Krenkova J, Svec F (2009) Less common applications of monoliths: IV. Recent developments in immobilized enzyme reactors for proteomics and biotechnology. J Sep Sci 32:706–718

    PubMed  CAS  Google Scholar 

  • Lauber MA, Running WE, Reilly JP (2009) B. subtilis ribosomal proteins: structural homology and post-translational modifications. J Proteome Res 8:4193–4206

    PubMed  CAS  Google Scholar 

  • Lazarev AV, Rejtar T, Dai S, Karger BL (2009) Centrifugal methods and devices for rapid in-gel digestion of proteins. Electrophoresis 30:966–973

    PubMed  CAS  Google Scholar 

  • Li A, Sowder RC, Henderson LE, Moore SP, Garfinkel DJ, Fisher RJ (2001) Chemical cleavage at aspartyl residues for protein identification. Anal Chem 73:5395–5402

    PubMed  CAS  Google Scholar 

  • Loo JA, Udseth HR, Smith RD (1988) Collisional effects on the charge distribution of ions from large molecules, formed by electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 2:207–210

    CAS  Google Scholar 

  • Lucas F, Barber M, Wolstenholme WA, Geddes AJ, Graham GN, Morris HR (1969) Mass-spectrometric determination of the amino acid sequences in peptides isolated from the protein silk fibroin of Bombyx mori. Biochem J 114:695–702

    PubMed  CAS  Google Scholar 

  • Ma J, Zhang L, Liang Z, Zhang W, Zhang Y (2009) Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Anal Chim Acta 632:1–8

    PubMed  CAS  Google Scholar 

  • MacCoss MJ, McDonald WH, Saraf A, Sadygov R, Clark JM, Tasto JJ, Gould KL, Wolters D, Washburn M, Weiss A, Clark JI, Yates JR 3rd (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA 99:7900–7905

    PubMed  CAS  Google Scholar 

  • Macek B, Waanders LF, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 5:949–958

    PubMed  CAS  Google Scholar 

  • Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    PubMed  CAS  Google Scholar 

  • Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131

    PubMed  CAS  Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA 105:18132–18138

    PubMed  CAS  Google Scholar 

  • Millea KM, Krull IS, Cohen SA, Gebler JC, Berger SJ (2006) Integration of multidimensional chromatographic protein separations with a combined “top-down” and “bottom-up” proteomic strategy. J Proteome Res 5:135–146

    Google Scholar 

  • Molle D, Jardin J, Piot M, Pasco M, Leonil J, Gagnaire V (2009) Comparison of electrospray and matrix-assisted laser desorption ionization on the same hybrid quadrupole time-of-flight tandem mass spectrometer: application to bidimensional liquid chromatography of proteins from bovine milk fraction. J Chromatogr A 1216:2424–2432

    PubMed  CAS  Google Scholar 

  • Morris HR, Batley KE, Harding NC, Bjur RA, Dann JG, King RW (1974) Dihydrofolate reductase: low-resolution mass-spectrometric analysis of an elastase digest as a sequencing tool. Biochem J 137:409–411

    PubMed  CAS  Google Scholar 

  • Nonaka T, Ishikawa H, Tsumuraya Y, Hashimoto Y, Dohmae N (1995) Characterization of a thermostable lysine-specific metalloendopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa. J Biochem 118:1014–1020

    PubMed  CAS  Google Scholar 

  • Papasotiriou DG, Jaskolla TW, Markoutsa S, Baeumlisberger D, Karas M, Meyer B (2010) Peptide mass fingerprinting after less specific in-gel proteolysis using MALDI-LTQ-Orbitrap and 4-chloro-alpha-cyanocinnamic acid. J Proteome Res 9:2619–2629

    PubMed  CAS  Google Scholar 

  • Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30:S174–S180

    PubMed  Google Scholar 

  • Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    PubMed  CAS  Google Scholar 

  • Rahali V, Gueguen J (1999) Chemical cleavage of bovine B-lactoglobulin by BNPSSkatole for preparative purposes: comparative study of hydrolytic procedures and peptide characterization. J Protein Chem 18:1–12

    PubMed  CAS  Google Scholar 

  • Razunguzwa TT, Biddle A, Anderson H, Zhan D, Powell M (2009) Development of a microfluidic-based gel protein recovery system. Electrophoresis 30:4020–4028

    PubMed  CAS  Google Scholar 

  • Remily-Wood E, Dirscherl H, Koomen JM (2009) Acid hydrolysis of proteins in matrix assisted laser desorption ionization matrices. J Am Soc Mass Spectrom 20:2106–2115

    PubMed  CAS  Google Scholar 

  • Rietschel B, Arrey TN, Meyer B, Bornemann S, Schuerken M, Karas M, Poetsch A (2009a) Elastase digests: new ammunition for shotgun membrane proteomics. Mol Cell Proteomics 8:1029–1043

    PubMed  CAS  Google Scholar 

  • Rietschel B, Bornemann S, Arrey TN, Baeumlisberger D, Karas M, Meyer B (2009b) Membrane protein analysis using an improved peptic in-solution digestion protocol. Proteomics 9:5553–5557

    PubMed  CAS  Google Scholar 

  • Rietschel B, Baeumlisberger D, Arrey TN, Bornemann S, Rohmer M, Schuerken M, Karas M, Meyer B (2009c) The benefit of combining nLC–MALDI-Orbitrap MS data with nLC–MALDI-TOF/TOF data for proteomic analyses employing elastase. J Proteome Res 8:5317–5324

    PubMed  CAS  Google Scholar 

  • Righetti PG, Castagna A, Antonucci F, Piubelli C, Cecconi D, Campostrini N, Rustichelli C, Antonioli P, Zanusso G, Monaco S, Lomas L, Boschetti E (2005a) Proteome analysis in the clinical chemistry laboratory: myth or reality? Clin Chim Acta 357:123–139

    PubMed  CAS  Google Scholar 

  • Righetti PG, Castagna A, Antonioli P, Boschetti E (2005b) Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis 26:297–319

    PubMed  CAS  Google Scholar 

  • Ros A, Faupel M, Mees H, van Oostrum J, Ferrigno R, Reymond F, Michel P, Rossier JS, Girault HH (2002) Protein purification by off-gel electrophoresis. Proteomics 2:151–156

    PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    PubMed  CAS  Google Scholar 

  • Ryan CM, Souda P, Bassilian S, Ujwal R, Zhang J, Abramson J, Ping P, Durazo A, Bowie JU, Hasan S, Baniulis D, Cramer WA, Faull KF, Whitelegge JP (2010) Post-translational modifications of integral membrane proteins resolved by top-down Fourier-transform mass spectrometry with collisionally activated dissociation. Mol Cell Proteomics 9:791–803

    Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    PubMed  CAS  Google Scholar 

  • Schaub TM, Hendrickson CL, Horning S, Quinn JP, Senko MW, Marshall AG (2008) High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal Chem 80:3985–3990

    PubMed  CAS  Google Scholar 

  • Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD (2001) Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 73:170–176

    PubMed  CAS  Google Scholar 

  • Schlosser A, Bodem J, Bossemeyer D, Grummt I, Lehmann WD (2002) Identification of protein phosphorylation sites by combination of elastase digestion, immobilized metal affinity chromatography, and quadrupole-time of flight tandem mass spectrometry. Proteomics 2:911–918

    PubMed  CAS  Google Scholar 

  • Schlosser A, Vanselow JT, Kramer A (2005) Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. Anal Chem 77:5243–5250

    PubMed  CAS  Google Scholar 

  • Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR (2008) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11

    Google Scholar 

  • Schultz J, Allison H, Grice M (1962) Specificity of the cleavage of proteins by dilute acid. I. Release of aspartic acid from insulin, ribonuclease, and glucagon. Biochemistry 1:694–698

    PubMed  CAS  Google Scholar 

  • Sharma S, Simpson DC, Tolic N, Jaitly N, Mayampurath AM, Smith RD, Pasa-Tolic L (2007) Proteomic profiling of intact proteins using WAX-RPLC 2-D separations and FTICR mass spectrometry. J Proteome Res 6:602–610

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    PubMed  CAS  Google Scholar 

  • Simo-Alfonso E, Gelfi C, Sebastiano R, Citterio A, Righetti PG (1996a) Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability: I. Synthetic route and product characterization. Electrophoresis 17:723–731

    PubMed  CAS  Google Scholar 

  • Simo-Alfonso E, Gelfi C, Sebastiano R, Citterio A, Righetti PG (1996b) Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability: II. Properties of N-acryloylaminopropanol. Electrophoresis 17:732–737

    PubMed  CAS  Google Scholar 

  • Simpson DC, Ahn S, Pasa-Tolic L, Bogdanov B, Mottaz HM, Vilkov AN, Anderson GA, Lipton MS, Smith RD (2006) Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling. Electrophoresis 27:2722–2733

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Reinberg D (2008) Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9:815–820

    PubMed  CAS  Google Scholar 

  • Smith BJ (2003) Chemical cleavage of polypeptides. Methods Mol Biol 211:63–82

    PubMed  CAS  Google Scholar 

  • Speers AE, Wu CC (2007) Proteomics of integral membrane proteins—theory and application. Chem Rev 107:3687–3714

    PubMed  CAS  Google Scholar 

  • Speicher K, Kolbas O, Harper S, Speicher D (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 11:74–86

    PubMed  CAS  Google Scholar 

  • Spross J, Sinz A (2009) Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics. Anal Bioanal Chem 395:1583–1588

    PubMed  CAS  Google Scholar 

  • Spross J, Sinz A (2010) A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry. Anal Chem 82:1434–1443

    PubMed  CAS  Google Scholar 

  • Stewart II, Thomson T, Figeys D (2001) 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom 15:2456–2465

    PubMed  CAS  Google Scholar 

  • Strader MB, Verberkmoes NC, Tabb DL, Connelly HM, Barton JW, Bruce BD, Pelletier DA, Davison BH, Hettich RL, Larimer FW, Hurst GB (2004) Characterization of the 70S ribosome from Rhodopseudomonas palustris using an integrated “top-down” and “bottom-up” mass spectrometric approach. J Proteome Res 3:965–978

    PubMed  CAS  Google Scholar 

  • Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JE, Coon JJ (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79:477–485

    PubMed  CAS  Google Scholar 

  • Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5:959–964

    PubMed  CAS  Google Scholar 

  • Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9:1323–1329

    PubMed  CAS  Google Scholar 

  • Swatkoski S, Russell SC, Edwards N, Fenselau C (2006) Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Anal Chem 78:181–188

    PubMed  CAS  Google Scholar 

  • Swatkoski S, Gutierrez P, Ginter J, Petrov A, Dinman JD, Edwards N, Fenselau C (2007a) Integration of residue-specific acid cleavage into proteomic workflows. J Proteome Res 6:4525–4527

    PubMed  CAS  Google Scholar 

  • Swatkoski S, Russell S, Edwards N, Fenselau C (2007b) Analysis of a model virus using residue-specific chemical cleavage and MALDI-TOF mass spectrometry. Anal Chem 79:654–658

    PubMed  CAS  Google Scholar 

  • Swatkoski S, Gutierrez P, Wynne C, Petrov A, Dinman JD, Edwards N, Fenselau C (2008) Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications. J Proteome Res 7:579–586

    PubMed  CAS  Google Scholar 

  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    PubMed  CAS  Google Scholar 

  • Sze SK, Ge Y, Oh H, McLafferty FW (2002) Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proc Natl Acad Sci USA 99:1774–1779

    PubMed  CAS  Google Scholar 

  • Taouatas N, Drugan MM, Heck AJ, Mohammed S (2008) Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods 5:405–407

    PubMed  CAS  Google Scholar 

  • Tran JC, Doucette AA (2008) Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal Chem 80:1568–1573

    PubMed  CAS  Google Scholar 

  • Trimpin S, Inutan ED, Herath TN, McEwen CN (2010a) Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal Chem 82:11–15

    PubMed  CAS  Google Scholar 

  • Trimpin S, Inutan ED, Herath TN, McEwen CN (2010b) Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol Cell Proteomics 9:362–367

    PubMed  CAS  Google Scholar 

  • Tsugita A, Takamoto K, Kamo M, Iwadate H (1992) C-terminal sequencing of protein. A novel partial acid hydrolysis and analysis by mass spectrometry. Eur J Biochem 206:691–696

    PubMed  CAS  Google Scholar 

  • van Breukelen B, Georgiou A, Drugan MM, Taouatas N, Mohammed S, Heck AJ (2010) LysNDeNovo: an algorithm enabling de novo sequencing of Lys-N generated peptides fragmented by electron transfer dissociation. Proteomics 10:1196–1201

    Google Scholar 

  • van Montfort BA, Doeven MK, Canas B, Veenhoff LM, Poolman B, Robillard GT (2002a) Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim Biophys Acta 1555:111–115

    PubMed  Google Scholar 

  • van Montfort BA, Canas B, Duurkens R, Godovac-Zimmermann J, Robillard GT (2002b) Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 37:322–330

    PubMed  Google Scholar 

  • Vellaichamy A, Tran JC, Catherman AD, Lee JE, Kellie JF, Sweet SMM, Zamdborg L, Thomas PM, Ahlf DR, Durbin KR, Valaskovic GA, Kelleher NL (2010) Size-sorting combined with improved nanocapillary liquid chromatography-mass spectrometry for identification of intact proteins up to 80 kDa. Anal Chem 82:1234–1244

    PubMed  CAS  Google Scholar 

  • VerBerkmoes NC, Bundy JL, Hauser L, Asano KG, Razumovskaya J, Larimer F, Hettich RL, Stephenson JL Jr (2002) Integrating ‘top-down” and “bottom-up” mass spectrometric approaches for proteomic analysis of Shewanella oneidensis. J Proteome Res 1:239–252

    PubMed  CAS  Google Scholar 

  • Vestling MM, Kelly MA, Fenselau C (1994) Optimization by mass spectrometry of a tryptophan-specific protein cleavage reaction. Rapid Commun Mass Spectrom 8:786–790

    PubMed  CAS  Google Scholar 

  • Vorm O, Roepstorff P (1994) Peptide sequence information derived by partial acid hydrolysis and matrix-assisted laser desorption/ionization mass spectrometry. Biol Mass Spectrom 23:734–740

    PubMed  CAS  Google Scholar 

  • Wall DB, Kachman MT, Gong S, Hinderer R, Parus S, Misek DE, Hanash SM, Lubman DM (2000) Isoelectric focusing nonporous RP HPLC: a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Anal Chem 72:1099–1111

    PubMed  CAS  Google Scholar 

  • Wall DB, Kachman MT, Gong SS, Parus SJ, Long MW, Lubman DM (2001) Isoelectric focusing nonporous silica reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry: a three-dimensional liquid-phase protein separation method as applied to the human erythroleukemia cell-line. Rapid Commun Mass Spectrom 15:1649–1661

    PubMed  CAS  Google Scholar 

  • Wang B, Malik R, Nigg EA, Körner R (2008) Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis. Anal Chem 80:9526–9533

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphrey-Smith I (1995) Progress with gene-product mapping of Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    PubMed  CAS  Google Scholar 

  • Whitelegge JP, Halgand F, Souda P, Zabrouskov V (2006) Top-down mass spectrometry of integral membrane proteins. Exp Rev Proteomics 3:585–596

    CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    PubMed  CAS  Google Scholar 

  • Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    PubMed  CAS  Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    PubMed  CAS  Google Scholar 

  • Wu J, Gage DA, Watson JT (1996) A strategy to locate cysteine residues in proteins by specific chemical cleavage followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 235:161–174

    PubMed  CAS  Google Scholar 

  • Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21:532–538

    PubMed  CAS  Google Scholar 

  • Wu SL, Kim J, Hancock WS, Karger B (2005) Extended range proteomic analysis (ERPA): a new and sensitive LC–MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). J Proteome Res 4:1155–1170

    PubMed  CAS  Google Scholar 

  • Wu SL, Hühmer AF, Hao Z, Karger BL (2007) On-line LC–MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6:4230–4244

    PubMed  CAS  Google Scholar 

  • Wu S, Lourette NM, Tolić N, Zhao R, Robinson EW, Tolmachev AV, Smith RD, Pasa-Tolić L (2009a) An integrated top-down and bottom-up strategy for broadly characterizing protein isoforms and modifications. J Proteome Res 8:1347–1357

    PubMed  CAS  Google Scholar 

  • Wu S, Yang F, Zhao R, Tolić N, Robinson EW, Camp DG 2nd, Smith RD, Pasa-Tolić L (2009b) Integrated workflow for characterizing intact phosphoproteins from complex mixtures. Anal Chem 81:4210–4219

    PubMed  CAS  Google Scholar 

  • Yamagami T, Ishiguro M (1998) Complete amino acid sequences of chitinase-1 and -2 from bulbs of genus Tulipa. Biosci Biotechnol Biochem 62:1253–1257

    PubMed  CAS  Google Scholar 

  • Yan F, Subramanian B, Nakeff A, Barder TJ, Parus SJ, Lubman DM (2003) A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2-D liquid separation mapping method based upon chromatofocusing PI fractionation. Anal Chem 75:2299–2308

    PubMed  CAS  Google Scholar 

  • Yang Y, Zhang S, Howe K, Wilson DB, Moser F, Irwin D, Thannhauser TW (2007) A comparison of nLC–ESI-MS/MS and nLC–MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. J Biomol Tech 18:226–237

    PubMed  Google Scholar 

  • Yergey JA, Cotter RJ, Heller D, Fenselau C (1984) Resolution requirements for middle molecule mass spectrometry. Anal Chem 56:2262–2263

    CAS  Google Scholar 

  • Yoo C, Zhao J, Pal M, Hersberger K, Huber CG, Simeone DM, Beer DG, Lubman DM (2006) Automated integration of monolith-based protein separation with on-plate digestion for mass spectrometric analysis of esophageal adenocarcinoma human epithelial samples. Electrophoresis 27:3643–3651

    PubMed  CAS  Google Scholar 

  • Zabrouskov V, Whitelegge JP (2007) Increased coverage in the transmembrane domain with activated-ion electron capture dissociation for top-down Fourier-transform mass spectrometry of integral membrane proteins. J Proteome Res 6:2205–2210

    PubMed  CAS  Google Scholar 

  • Zamdborg L, LeDuc RD, Glowacz KJ, Kim YB, Viswanathan V, Spaulding IT, Early BP, Bluhm EJ, Babai S, Kelleher NL (2007) ProSight PTM 2.0: improved protein identification and characterization for top-down mass spectrometry. Nucleic Acids Res 35:W701–W706

    PubMed  Google Scholar 

  • Zhang J, Wu SL, Kim J, Karger BL (2007) Ultratrace liquid chromatography/mass spectrometry analysis of large peptides with post-translational modifications using narrow-bore poly(styrene-divinylbenzene) monolithic columns and extended range proteomic analysis. J Chromatogr A 1154:295–307

    PubMed  CAS  Google Scholar 

  • Zhang N, Shaw AR, Li N, Chen R, Mak A, Hu X, Young N, Wishart D, Li L (2008) Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes. Anal Chim Acta 627:82–90

    PubMed  CAS  Google Scholar 

  • Zheng S, Yoo C, Delmotte N, Miller FR, Huber CG, Lubman DM (2006) Monolithic column HPLC separation of intact proteins analyzed by LC–MALDI using on-plate digestion: An approach to integrate protein separation and identification. Anal Chem 78:5198–5204

    PubMed  CAS  Google Scholar 

  • Zhong H, Marcus SL, Li L (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J Am Soc Mass Spectrom 16:471–481

    PubMed  CAS  Google Scholar 

  • Zhu K, Kim J, Yoo C, Miller FR, Lubman DM (2003) High sequence coverage of proteins isolated from liquid separations of breast cancer cells using capillary electrophoresis-time-of-flight MS and MALDI-TOF MS mapping. Anal Chem 75:6209–6217

    PubMed  CAS  Google Scholar 

  • Zubarev RA, Chivanov VD, Hakansson P, Sundqvist BU (1994) Peptide sequencing by partial acid hydrolysis and high resolution plasma desorption mass spectrometry. Rapid Commun Mass Spectrom 8:906–912

    PubMed  CAS  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266

    CAS  Google Scholar 

  • Zvonok N, Xu W, Williams J, Janero D, Krishnan S, Makriyannis A (2010) Mass spectrometry-based GPCR proteomics: comprehensive characterization of the human cannabinoid 1 receptor. J Proteome Res 9:1746–1753

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Cluster of Excellence “Macromolecular Complexes” at the Goethe-University Frankfurt for the financial support and our colleagues Thorsten W. Jaskolla, Stavroula Markoutsa and Dorota Urbanek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjoern Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, B., Papasotiriou, D.G. & Karas, M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids 41, 291–310 (2011). https://doi.org/10.1007/s00726-010-0680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0680-6

Keywords

Navigation