Skip to main content

Survey of Shotgun Proteomics

  • Protocol
  • First Online:
Shotgun Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1156))

Abstract

Proteins provide the verbs to biology, and proteomics provides the nouns for their analytical and discovery-driven studies. The term proteomics was coined in the 1990s and deals with the protein complement of the genome—the proteome. Following the classical proteomics era, the development of new mass spectrometric methods for peptide analysis permitted the identification of proteins in peptide mixtures obtained by proteolytic digestion of complex samples, e.g., shotgun proteomics. Since its introduction, shotgun proteomics became the standard technique for the analysis of protein hydrolyzates in a high-throughput way. In this chapter, we provide a survey in shotgun proteomics highlighting instruments and techniques used in modern second and third proteomics generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hancock W, LaBaer J, Marko-Varga GA (2011) Journal of proteome research—10th anniversary. J Proteome Res 10:1–2

    CAS  Google Scholar 

  2. Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    CAS  PubMed  Google Scholar 

  3. Yates JR (2013) The revolution and evolution of shotgun proteomics for large-scale proteome analysis. J Am Chem Soc 135:1629–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  4. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed Central  PubMed  Google Scholar 

  5. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  PubMed  Google Scholar 

  6. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time?: of? flight mass spectrometry. Rapid Commun Mass Spectrom 2: 151–153

    CAS  Google Scholar 

  7. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    CAS  PubMed  Google Scholar 

  8. Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    CAS  PubMed  Google Scholar 

  9. Mann M, Højrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345

    CAS  PubMed  Google Scholar 

  10. Henzel WJ, Billeci TM, Stults JT et al (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci 90:5011–5015

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Yates JR, Speicher S, Griffin PR et al (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408

    CAS  PubMed  Google Scholar 

  12. James P, Quadroni M, Carafoli E et al (1993) Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun 195:58–64

    CAS  PubMed  Google Scholar 

  13. Eng JK, McCormack AL, Yates Iii JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    CAS  PubMed  Google Scholar 

  14. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Gen 33:311–323

    CAS  Google Scholar 

  15. Link AJ, Eng J, Schieltz DM et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    CAS  PubMed  Google Scholar 

  16. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    CAS  PubMed  Google Scholar 

  17. Larsen MR, Roepstorff P (2000) Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. Fresenius J Anal Chem 366:677–690

    CAS  PubMed  Google Scholar 

  18. Harvey DJ (2001) Identification of protein-bound carbohydrates by mass spectrometry. Proteomics 1:311–328

    CAS  PubMed  Google Scholar 

  19. MacCoss MJ, McDonald WH, Saraf A et al (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci U S A 99: 7900–7905

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    CAS  PubMed  Google Scholar 

  21. Cournoyer JJ, Pittman JL, Ivleva VB et al (2005) Deamidation: differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Sci 14: 452–463

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Edelson-Averbukh M, Pipkorn R, Lehmann WD (2007) Analysis of protein phosphorylation in the regions of consecutive serine/threonine residues by negative ion electrospray collision-induced dissociation. Approach to pinpointing of phosphorylation sites. Anal Chem 79:3476–3486

    CAS  PubMed  Google Scholar 

  23. Harvey DJ (2009) Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2003–2004. Mass Spectrom Rev 28:273–361

    CAS  PubMed  Google Scholar 

  24. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotech 17:994–999

    CAS  Google Scholar 

  25. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics MCP 1:376–386

    CAS  Google Scholar 

  26. Zhu H, Pan S, Gu S et al (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom RCM 16:2115–2123

    CAS  Google Scholar 

  27. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics MCP 3:1154–1169

    CAS  Google Scholar 

  28. Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics MCP 4:1265–1272

    CAS  Google Scholar 

  29. Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043

    CAS  PubMed  Google Scholar 

  30. Wang G, Wu WW, Zeng W et al (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5:1214–1223

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–150

    CAS  PubMed  Google Scholar 

  33. Gelpi E (2008) From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part I 1965-1984. J Mass Spectrom JMS 43:419–435

    CAS  Google Scholar 

  34. Gelpi E (2009) From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part II 1985–2000. J Mass Spectrom JMS 44:1137–1161

    CAS  Google Scholar 

  35. Thelen JJ, Miernyk JA (2012) The proteomic future: where mass spectrometry should be taking us. Biochem J 444:169–181

    CAS  PubMed  Google Scholar 

  36. Yates JR 3rd, Washburn MP (2013) Quantitative proteomics. Anal Chem 85:8881–8881

    CAS  PubMed  Google Scholar 

  37. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312: 212–217

    CAS  PubMed  Google Scholar 

  38. Spengler B (1997) Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J Mass Spectrom 32:1019–1036

    CAS  Google Scholar 

  39. Spengler B, Kirsch D, Kaufmann R et al (1992) Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 6:105–108

    CAS  PubMed  Google Scholar 

  40. Brown RS, Lennon JJ (1995) Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. Anal Chem 67:3990–3999

    CAS  PubMed  Google Scholar 

  41. Medzihradszky KF, Campbell JM, Baldwin MA et al (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72:552–558

    CAS  PubMed  Google Scholar 

  42. Yost RA, Enke CG (1979) Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem 51: 1251–1264

    CAS  PubMed  Google Scholar 

  43. Kanu AB, Dwivedi P, Tam M et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom JMS 43:1–22

    CAS  Google Scholar 

  44. Cooks RG, Glish GL, Mc Luckey SA et al (1991) Ion trap mass spectrometry. Chem Eng News 69:12, Medium:–X

    Google Scholar 

  45. March RE (1992) Ion trap mass spectrometry. Int J Mass Spectrom Ion Process 118–119:71–135

    Google Scholar 

  46. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    CAS  PubMed  Google Scholar 

  47. Schaub TM, Hendrickson CL, Horning S et al (2008) High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal Chem 80: 3985–3990

    CAS  PubMed  Google Scholar 

  48. Schwartz JC, Senko MW, Syka JEP (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13: 659–669

    CAS  PubMed  Google Scholar 

  49. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    CAS  PubMed  Google Scholar 

  50. Hager JW (2002) A new linear ion trap mass spectrometer. Rapid Commun Mass Spectrom 16:512–526

    CAS  Google Scholar 

  51. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72: 1156–1162

    CAS  PubMed  Google Scholar 

  52. Makarov A, Denisov E, Kholomeev A et al (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78:2113–2120

    CAS  PubMed  Google Scholar 

  53. Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom JMS 40:430–443

    CAS  Google Scholar 

  54. Hebert AS, Richards AL, Bailey DJ et al (2013) The one hour yeast proteome. Mol Cell Proteomics MCP 13(1):339–47

    Google Scholar 

  55. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11(11):601

    CAS  PubMed  Google Scholar 

  56. Biemann K (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass spectrom 16: 99–111

    CAS  PubMed  Google Scholar 

  57. Jones AW, Cooper HJ (2011) Dissociation techniques in mass spectrometry-based proteomics. Analyst 136:3419–3429

    CAS  PubMed  Google Scholar 

  58. Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    CAS  PubMed  Google Scholar 

  59. Ting L, Cowley MJ, Hoon SL et al (2009) Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics 8: 2227–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  60. McAlister GC, Phanstiel D, Wenger CD et al (2010) Analysis of tandem mass spectra by FTMS for improved large-scale proteomics with superior protein quantification. Anal Chem 82:316–322

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Pichler P, Kocher T, Holzmann J et al (2011) Improved precision of iTRAQ and TMT quantification by an axial extraction field in an Orbitrap HCD cell. Anal Chem 83: 1469–1474

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4: 709–712

    CAS  PubMed  Google Scholar 

  63. Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    CAS  PubMed  Google Scholar 

  64. Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Coon JJ, Ueberheide B, Syka JE et al (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci U S A 102:9463–9468

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Martin AJ, Synge RL (1941) Separation of the higher monoamino-acids by counter-current liquid-liquid extraction: the amino-acid composition of wool. Biochem J 35:91–121

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    CAS  PubMed  Google Scholar 

  69. Thakur SS, Geiger T, Chatterjee B et al (2011) Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol Cell Proteom MCP 10:M110–M003699

    Google Scholar 

  70. Nagaraj N, Kulak NA, Cox J et al (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteom MCP 11: M111–M013722

    Google Scholar 

  71. Xu T, Venable JD, Park SK et al. (2006) ProLuCID: a fast and sensitive tandem mass spectra-based protein identification program. Mol Cell Pro 5(10 suppl):S174

    Google Scholar 

  72. Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567

    CAS  PubMed  Google Scholar 

  73. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    CAS  PubMed  Google Scholar 

  74. Colinge J, Bennett KL (2007) Introduction to computational proteomics. PLoS Comput Biol 3

    Google Scholar 

  75. Deutsch EW, Lam H, Aebersold R (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Phys Genomic 33:18–25

    CAS  Google Scholar 

  76. Eng JK, Searle BC, Clauser KR et al (2011) A face in the crowd: recognizing peptides through database search. Mol Cell proteom MCP 10:R111–R009522

    Google Scholar 

  77. Zhou H, Ranish JA, Watts JD et al (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol 20:512–515

    CAS  PubMed  Google Scholar 

  78. Hansen KC, Schmitt-Ulms G, Chalkley RJ et al (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteom MCP 2:299–314

    CAS  Google Scholar 

  79. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    CAS  PubMed  Google Scholar 

  80. Hsu JL, Huang SY, Chow NH et al (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852

    CAS  PubMed  Google Scholar 

  81. Boersema PJ, Aye TT, van Veen TA et al (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8:4624–4632

    CAS  PubMed  Google Scholar 

  82. Thompson A, Schafer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75: 1895–1904

    CAS  PubMed  Google Scholar 

  83. Thingholm TE, Palmisano G, Kjeldsen F et al (2010) Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9:4045–4052

    CAS  PubMed  Google Scholar 

  84. Pichler P, Kocher T, Holzmann J et al (2010) Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem 82: 6549–6558

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ting L, Rad R, Gygi SP et al (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937–940

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Wenger CD, Lee MV, Hebert AS et al (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8:933–935

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Miyagi M, Rao KC (2007) Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom Rev 26:121–136

    CAS  PubMed  Google Scholar 

  88. Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Liao L, McClatchy DB, Park SK et al (2008) Quantitative analysis of brain nuclear phosphoproteins identifies developmentally regulated phosphorylation events. J Proteome Res 7:4743–4755

    CAS  PubMed Central  PubMed  Google Scholar 

  90. McClatchy DB, Liao L, Park SK et al (2007) Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res 17:1378–1388

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181

    CAS  PubMed  Google Scholar 

  92. Blagoev B, Ong SE, Kratchmarova I et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    CAS  PubMed  Google Scholar 

  93. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    CAS  PubMed  Google Scholar 

  94. Schwanhausser B, Gossen M, Dittmar G et al (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9: 205–209

    PubMed  Google Scholar 

  95. Cambridge SB, Gnad F, Nguyen C et al (2011) Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res 10: 5275–5284

    CAS  PubMed  Google Scholar 

  96. Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7: 383–385

    CAS  PubMed  Google Scholar 

  97. Ong SE (2012) The expanding field of SILAC. Anal Bioanalytical Chem 404:967–976

    CAS  Google Scholar 

  98. Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74:4741–4749

    CAS  PubMed  Google Scholar 

  99. Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323

    CAS  PubMed  Google Scholar 

  100. Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404: 939–965

    CAS  PubMed  Google Scholar 

  101. Gallien S, Duriez E, Domon B (2011) Selected reaction monitoring applied to proteomics. J Mass Spectrom JMS 46:298–312

    CAS  Google Scholar 

  102. Gerber SA, Rush J, Stemman O et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Conselho Nacional de Pesquisas (CNPq), Brazil, grant # 308819/ 2011-0, and FundaĂ§Ă£o de Amparo Ă  Pesquisa do Estado do Rio de Janeiro (FAPERJ), Brazil, grant # E-26/110.138/2013. We thank Dr Magno Junqueira, Proteomics Unit, UFRJ, for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto B. Domont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nogueira, F.C.S., Domont, G.B. (2014). Survey of Shotgun Proteomics. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0685-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0684-0

  • Online ISBN: 978-1-4939-0685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics