Skip to main content
Log in

The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Antidepressant-like activity of zinc in the forced swim test (FST) was demonstrated previously. Enhancement of such activity by joint administration of zinc and antidepressants was also shown. However, mechanisms involved in this activity have not yet been established. The present study examined the involvement of the NMDA and AMPA receptors in zinc activity in the FST in mice and rats. Additionally, the influence of zinc on both glutamate and aspartate release in the rat brain was also determined. Zinc-induced antidepressant-like activity in the FST in both mice and rats was antagonized by N-methyl-d-aspartic acid (NMDA, 75 mg/kg, i.p.) administration. Moreover, low and ineffective doses of NMDA antagonists (CGP 37849, L-701,324, d-cycloserine, and MK-801) administered together with ineffective doses of zinc exhibit a significant reduction of immobility time in the FST. Additionally, we have demonstrated the reduction of immobility time by AMPA receptor potentiator, CX 614. The antidepressant-like activity of both CX 614 and zinc in the FST was abolished by NBQX (an antagonist of AMPA receptor, 10 mg/kg, i.p.), while the combined treatment of sub-effective doses of zinc and CX 614 significantly reduces the immobility time in the FST. The present study also demonstrated that zinc administration potentiated a veratridine-evoked glutamate and aspartate release in the rat’s prefrontal cortex and hippocampus. The present study further suggests the antidepressant properties of zinc and indicates the involvement of the NMDA and AMPA glutamatergic receptors in this activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alt A, Witkin JM, Bleakman D (2005) AMPA receptor potentiators as novel antidepressants. Curr Pharm Des 11:1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Alt A, Nisenbaum ES, Bleakman D, Jeffrey MW (2006) A role for AMPA receptors in mood disorders. Biochem Pharmacol 71:1273–1288

    Article  CAS  PubMed  Google Scholar 

  • Arai AC, Kessler M, Rogers G, Lynch G (2000) Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol Pharmacol 58:802–813

    CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bleakman D, Alt A, Witkin JM (2007) AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 2:117–126

    Article  Google Scholar 

  • Cardoso CC, Lobato KR, Binfare RW, Ferreira PK, Rosa AO, Santos AR, Rodriques AL (2009) Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuropsychopharmacol Biol Psychiatry 33:235–242

    Article  CAS  PubMed  Google Scholar 

  • Cieslik K, Klenk-Majewska B, Danilczuk Z, Wrobel A, Lupina T, Ossowska G (2007) Influence of zinc supplementation on imipramine effect in a chronic unpredictable stress (CUS) model in rats. Pharmacol Rep 59:46–52

    CAS  PubMed  Google Scholar 

  • Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    Article  CAS  PubMed  Google Scholar 

  • Cunha MP, Machado DG, Bettio LE, Capra JC, Rodrigues AL (2008) Interaction of zinc with antidepressants in tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 32:1913–1920

    Article  CAS  PubMed  Google Scholar 

  • Decollogne S, Tomas A, Lecerf C, Adamowicz E, Seman M (1997) NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801. Pharmacol Biochem Behav 58:261–268

    Article  CAS  PubMed  Google Scholar 

  • Dybala M, Siwek A, Poleszak E, Pilc A, Nowak G (2008) Lack of NMDA–AMPA interaction in antidepressant-like effect of CGP 37849, an antagonist of NMDA receptor, in the forced swim test. J Neural Transm 115:1519–1520

    Article  CAS  PubMed  Google Scholar 

  • Fagg GE, Olpe HR, Pozza MF, Baud J, Steinmann M, Schmutz M, Portet C et al (1990) CGP 37849 and CGP 39551: novel and competitive N-methyl-d-aspartate receptor antagonists with oral activity. Br J Pharmacol 99:791–797

    CAS  PubMed  Google Scholar 

  • Franco JL, Posser T, Brocardo PS, Trevisan R, Uliano-Silva M, Gabilan NH, Santos AR, Lleal RB, Rodrigues AL, Farina M, Dafre Al (2008) Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc. Behav Brain Res 188:316–323

    Article  CAS  PubMed  Google Scholar 

  • Freed WJ, Dillon-Carter O, Kleinman JE (1993) Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp Neurol 121:48–56

    Article  CAS  PubMed  Google Scholar 

  • Füruzan Y, Erden BF, Ulak G, Utkan T, Gacar N (2000) Antidepressant-like effect of 7-nitroindazole in the forced swimming test in rats. Psychopharmacology 149:41–44

    Article  Google Scholar 

  • Golembiowska K, Zylewska A (1999) Effect of antidepressant drugs on veratridine-evoked glutamate and aspartate release in rat prefrontal cortex. Pol J Pharmacol 51:63–70

    CAS  PubMed  Google Scholar 

  • Hansen CR Jr, Malecha M, Mackenzie TB, Kroll J (1983) Cooper and zinc deficiencies in association with depression and neurological findings. Biol Psychiatry 18:395–401

    PubMed  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2009) Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 61:105–123

    Article  CAS  PubMed  Google Scholar 

  • Hindmarch I (2001) Expanding the horizons of depression: beyond the monoamine hypothesis. Hum Psychopharmacol 16:203–218

    Article  CAS  PubMed  Google Scholar 

  • Hollister LE, Csernansky JG (1990) Clinical Pharmacology of Psychotherapeutic Drugs, 3rd edn. Churchill Livingstone, New York

    Google Scholar 

  • Jourdi H, Hsu Y-T, Zhou M, Qin Q, Bi X, Baudry M (2009) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29:8688–8697

    Article  CAS  PubMed  Google Scholar 

  • Keitner GI, Ryan CE, Solomon DA (2006) Realistic expectations and a disease management model for depressed patients with persistent symptoms. J Clin Psychiatry 67:1412–1421

    Article  PubMed  Google Scholar 

  • Kendig IV, Charen S, Lepine LT (1956) Psychological side-effects induced by cycloserine in the treatment of pulmonary tuberculosis. Am Rev Tuberc 73:438–441

    CAS  PubMed  Google Scholar 

  • Knecht R, Chang J-Y (1986) Liquid chromatographic determination of amino acids after gas-phase hydrolysis and derivatization with (dimethylamino)azobenzenesulfonyl chloride. Anal Chem 58:2375–2379

    Article  CAS  PubMed  Google Scholar 

  • Kroczka B, Zieba A, Dudek D, Pilc A, Nowak G (2000) Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol J Pharmacol 52:403–406

    CAS  PubMed  Google Scholar 

  • Kroczka B, Branski P, Pałucha A, Pilc A, Nowak G (2001) Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 55:297–300

    Article  CAS  PubMed  Google Scholar 

  • Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10:808–819

    PubMed  Google Scholar 

  • Kulagowski JJ, Baker R, Curtis NR, Leeson PD, Mawer IM, Mosesley AM, Ridgill MP et al (1994) 3′-(Arylmethyl)-and 3′(aryloxy)-3-phenyl-4-hydroxyquinolin-2(IH)-ones: orally active antagonists of the glycine site on the NMDA receptor. J Med Chem 37:1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Levenson CW (2006a) Regulation of the NMDA receptor: implications for neuropsychological development. Nutr Rev 64:428–432

    Article  PubMed  Google Scholar 

  • Levenson CW (2006b) Zinc: the new antidepressant. Nutr Rev 64:39–42

    Article  PubMed  Google Scholar 

  • Lopes T, Neubauer P, Boje KM (1997) Chronic administration of NMDA glycine partial agonists induces tolerance in the Porsolt swim test. Pharmacol Biochem Behav 58:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Manji HK, Zarate CA (2009) The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist 15:525–539

    Article  CAS  PubMed  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  • Maes M, D’Haese PC, Scharpe S, D’Hondt (1994) Hypozincemia in depression. J Affect Disord 2:135–140

  • Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C (1997) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiatry 42:349–358

    Article  CAS  PubMed  Google Scholar 

  • Maes M, De Vos N, Demedts P, Wauters A (1999) Lower serum zinc in major depression in relation to changes in serum acute phase proteins. J Affect Disord 56:189–194

    Article  CAS  PubMed  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1992) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 2:37–41

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin IJ, Hodge SJ (1990) Zinc in depressive disorder. Acta Psychiatr Scand 82:451–453

    Article  CAS  PubMed  Google Scholar 

  • Meador-Woodruff JH, Hogg AJ Jr, Smith RE (2001) Striatal inotropic glutamate receptor expression schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 55:631–640

    Article  CAS  PubMed  Google Scholar 

  • Mittal CK, Harrell WB, Mehta CS (1995) Interaction of heavy metal toxicants with brain constitutive nitric oxide synthase. Mol Cell Biochem 149–150:263–265

    Article  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. Neuroscience 17:2921–2927

    CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteeggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  • Nowak G, Schlegel-Zawadzka M (1999) Alterations in serum and brain trace element levels after antidepressant treatment: part I. Zinc Biol Trace Elem Res 67:85–92

    Article  CAS  Google Scholar 

  • Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-d-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164

    Article  CAS  PubMed  Google Scholar 

  • Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003a) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147

    CAS  PubMed  Google Scholar 

  • Nowak G, Szewczyk B, Wieronska JM, Branski P, Palucha A, Pilc A, Sadlik K, Piekoszewski W (2003b) Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull 61:159–164

    Article  CAS  PubMed  Google Scholar 

  • Opoka W, Sowa-Kucma M, Kowalska M, Bas B, Golembiowska K, Nowak G (2008) Intraperitoneal zinc administration increases extracellular zinc in the rat prefrontal cortex. J Physiol Pharmacol 59:477–487

    CAS  PubMed  Google Scholar 

  • Panconi E, Roux J, Altenbaumer M, Hampe S, Porsolt RD (1993) MK-801 and enantiomers: potential antidepressants or false positives in classical screening models? Pharmacol Biochem Behav 46:15–20

    Article  CAS  PubMed  Google Scholar 

  • Petrie RX, Reid IC, Stewart CA (2000) The N-methyl-d-aspartate receptor, synaptic plasticity and depressive disorder. A critical review. Pharmacol Ther 87:11–25

    Article  CAS  PubMed  Google Scholar 

  • Pittenger C, Sanacora G, Krystal JH (2007) The NMDA receptor as a therapeutic target in major depressive disorder. CNS Neurolog Disord Drug Targets 6:101–115

    Article  CAS  Google Scholar 

  • Poleszak E (2007) Modulation of antidepressant-like activity of magnesium by serotonergic system. J Neural Transm 114:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Szewczyk B, Kędzierska E, Wlaz P, Pilc A, Nowak G (2004) Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav 78:7–12

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaz P, Kedzierska E, Radziwon-Zaleska M, Pilc A, Fidecka S, Nowak G (2005a) Effects of acute and chronic treatment with magnesium in the forced swim test in rats. Pharmacol Rep 57:654–658

    CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaz P, Szewczyk B, Kedzierska E, Wyska E, Librowski T, Szymura-Oleksiak J, Fidecka S, Pilc A, Nowak G (2005b) Enhancement of antidepressant-like activity by joint administration of imipramine and magnesium in the forced swim test: Behavioral and pharmacokinetic studies in mice. Pharmacol Biochem Behav 81:524–529

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaz P, Kedzierska E, Nieoczym D, Wrobel A, Fidecka S, Pilc A, Nowak G (2007a) NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol Biochem Behav 88:158–164

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaz P, Wrobel A, Dybala M, Sowa M, Fidecka S, Pilc A, Nowak G (2007b) Activation of the NMDA/glutamate receptor complex antagonizes the NMDA antagonist-induced antidepressant-like effects in the forced swim test. Pharmacol Rep 59:595–600

    CAS  PubMed  Google Scholar 

  • Poleszak E, Szewczyk B, Wlaz A, Fidecka S, Wlaz P, Pilc A, Nowak G (2008) d-serine, a selective glycine/N-methyl-d-aspartate receptor agonist, antagonizes the antidepressant-like effects of magnesium and zinc in mice. Pharmacol Rep 60:996–1000

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rat: A new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101, 606 in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28:631–637

    Article  CAS  PubMed  Google Scholar 

  • Przegalinski E, Tatarczynska E, Chojnacka-Wojcik E (1998) Anxiolytic- and antidepressant-like effects of an antagonist at glycine B receptors. Pol J Pharmacol 50:349–354

    CAS  PubMed  Google Scholar 

  • Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93

    Article  CAS  PubMed  Google Scholar 

  • Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulated glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162:394–396

    Article  PubMed  Google Scholar 

  • Rubio G, San L, Lopez-Munoz F, Alamo C (2004) Reboxetine adjunct for partial or nonresponders to antidepressant treatment. Affect Disord 81:67–72

    Article  CAS  Google Scholar 

  • Sanacora G, Rothman DL, Mason G, Krystal JH (2003) Clinical studies implementing glutamate neurotransmission in mood disorders. Ann NY Acad Sci 1003:292–308

    Article  CAS  PubMed  Google Scholar 

  • Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437

    Article  CAS  PubMed  Google Scholar 

  • Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40

    Article  CAS  PubMed  Google Scholar 

  • Skolnick P (2008) AMPA receptors: a target for novel antidepressants? Biol Psychiatry 63:347–348

    Article  PubMed  Google Scholar 

  • Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R (1996) Adaptation of N-methyl-d-aspartate (NMDA) receptors following antidepressant treatment: Implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26

    Article  CAS  PubMed  Google Scholar 

  • Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci. doi:10.1016/j.tips.2009.09.002

  • Sowa-Kucma M, Legutko B, Szewczyk B, Novak K, Znojek P, Poleszak E, Papp M, Pilc, Nowak G (2008) Antidepressant-like activity of zinc: further behavioral and molecular evidence. J Neural Transm 115:1621–1628

  • Stier C, Skorka G, Sohr R, Ott T (1996) Time course and role of extracellular Ca2+ in veratridine-induced glutamate release. NeuroReport 7:401–404

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Nat Acad Sci 99:3182–3187

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk B, Branski P, Wieronska JM, Palucha A, Pilc A, Nowak G (2002) Interaction of zinc with antidepressants in the forced swimming test in mice. Pol J Pharmacol 54:681–685

    CAS  PubMed  Google Scholar 

  • Szewczyk B, Poleszak E, Sowa M, Siwek M, Dudek D, Ryszewska-Pokrasniewicz B, Radziwon-Zaleska M et al (2008) Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep 60:588–599

    CAS  PubMed  Google Scholar 

  • Szewczyk B, Poleszak E, Wlaz P, Wrobel A, Blicharska E, Cichy A, Dybala M, Siwek A, Pomierny-Chamiolo L, Piotrowska A, Branski P, Pilc A, Nowak G (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 33:323–329

    Article  CAS  PubMed  Google Scholar 

  • Tassabehji NM, Corniola RS, Alshingiti A, Levenson CW (2008) Zinc deficiency induces depression-like symptoms in adult rats. Physiol Behav 95:365–369

    Article  CAS  PubMed  Google Scholar 

  • Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10

    Article  CAS  PubMed  Google Scholar 

  • Vizi ES (2000) Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52:63–89

    CAS  PubMed  Google Scholar 

  • Whittle N, Lubec G, Singewald (2009) Zinc deficiency induces enhancement depression-like bahaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158

  • Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526

    Article  CAS  PubMed  Google Scholar 

  • Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-d-aspartate antagonist. Proc Natl Acad Sci USA 83:104–108

    Google Scholar 

  • Wu G (2009) Amino Acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Zarate CA, Quiroz J, Payne J, Manji HK (2002) Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull 36:35–83

    PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A-randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank “Farmapol” and “Cortex Pharmaceuticals” (Dr. Mark Varney) for the generous gift of compounds. This study was partially supported by Funds for Statutory Activity of the Institute of Pharmacology, Polish Academy of Sciences; Collegium Medicum, Jagiellonian University, Kraków and Medical University of Lublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szewczyk, B., Poleszak, E., Sowa-Kućma, M. et al. The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Amino Acids 39, 205–217 (2010). https://doi.org/10.1007/s00726-009-0412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0412-y

Keywords

Navigation