Skip to main content

Advertisement

Log in

Role of transglutaminase 2 in quercetin-induced differentiation of B16-F10 murine melanoma cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Flavonoids belong to the class of plant polyphenolic compounds with over 6,000 individual structures known. These phytochemicals have attracted the interest of the scientists, because they possess a remarkable spectrum of biological activities, such as antiallergic, antiinflammatory, antioxidant, antimutagenic and anticarcinogenic. In this work, we compared the anticancer potential of two flavonoids, quercetin and pelargonidin, on highly metastatic B16-F10 melanoma murine cells. We have evaluated different parameters related to cell proliferation and differentiation, such as cell number, toxicity, intracellular content of polyamines and transglutaminase (TG, EC 2.3.2.13) activity. The higher inhibition of tumor cell growth, with respect to control, was obtained with quercetin cell treatment, i.e. 32% reduction after 48 h and 39% reduction after 72 h of incubation (P < 0.001). In parallel, quercetin-treated cells showed a similar decrease in polyamine content. TG activity was fourfold increased, with respect to control, after 48 h and twofold increased after 72 h (P < 0.001). Pelargonidin treatment did not show significant antiproliferative effects and any increase in TG activity. Proteomic approach was used to investigate changes in protein expression profiles in tumor cells following quercetin treatment. Changes in expression of 60 proteins were detected, i.e. 8 proteins were down-regulated, 35 up-regulated, 11 “de novo” synthetized proteins and 6 suppressed proteins were present in treated cells. A 80 kDa spot, identified as TG type 2 by Western blot analysis, presented a fourfold increase in intensity, confirming the key role played by TG in the induction of cancer cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arani I, Adler-Storthz K, Chen Z, Tyring SK, Brysk H, Brysk MM (1997) Differentiation markers in oral carcinoma cell lines and tumors. Anticancer Res 17:4607–4610

    Google Scholar 

  • Atalay M, Gordillo G, Roy S, Rovin B, Bagchi D, Bagchi M, Sen CK (2003) Antiangiogenic property of edible berry in a model of hemangioma. FEBS Lett 44(1–3):252–257

    Article  CAS  Google Scholar 

  • Autuori F, Farrace MG, Oliverio S, Piredda L, Piacentini M (1998) ‘‘Tissue’’ transglutaminase and apoptosis. Adv Biochem Eng Biotechnol 62:129–136

    PubMed  CAS  Google Scholar 

  • Avila MA, Velasco JA, Cansado J, Notario V (1994) Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res 54:2424–2428

    PubMed  CAS  Google Scholar 

  • Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ (1997) Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95(2):179–189

    PubMed  CAS  Google Scholar 

  • Benedetti L, Grignani F, Scicchitano BM, Jetten AM, Diverio D, Lococo F, Avisati G, Gambacorti-Passerini C, Adamo S, Levin AA, Pelicci PG, Nervi C (1996) Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RAalpha-mediated increase of type II transglutaminase. Blood 87:1939–1950

    PubMed  CAS  Google Scholar 

  • Beninati S (1995) Post-translational modification of protein in cancer cells: the transglutaminase-catalyzed reactions. Cancer J 8:234–236

    Google Scholar 

  • Beninati S (1997) Transglutaminase activity and protein polyamine binding capacity in animal and plant cells. In: Pandalai G (ed) Recent developments in phytochemistry, vol 1. Res Signpost, Kerala, pp 243–253

    Google Scholar 

  • Beninati S, Abbruzzese A, Cardinali M (1993) Differences in thepost-translational modification of proteins by polyamines between weakly and highly metastatic B16 melanoma cells. Int J Cancer 53:792–797

    Article  PubMed  CAS  Google Scholar 

  • Beninati S, Martinet N, Folk JE (1988) High-performance liquid chromatographic method for the determination of ε-(γ-glutamyl)lysine and mono- and bis-γ-glutamylderivatives of putrescine and spermidine. J Chromatogr 443:329–335

    Article  PubMed  CAS  Google Scholar 

  • Beninati S, Piacentini M (2004) The transglutaminase family: an overview. Amino Acids 26:367–372

    PubMed  CAS  Google Scholar 

  • Beninati S, Senger DR, Cordella Miele E, Mukhrjee AB, Singh K, Mukherjee BB (1994) Osteopontin: its transglutaminase-catalyzed postranslational modifications and cross-linking to fibronectin. J Biochem 115:675–682

    PubMed  CAS  Google Scholar 

  • Bomser J, Madhavi DL, Singletary K, Smith MA (1996) In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med 62(3):212–216

    Article  PubMed  CAS  Google Scholar 

  • Caraglia M, Marra M, Giuberti G, D’Alessandro AM, Beninati S, Lentini A et al (2002) Theophylline-induced apoptosis is paralleled by protein kinase A-dependent tissue transglutaminase activation in cancer cells. J Biochem 132:45–52

    PubMed  CAS  Google Scholar 

  • Chu YF, Sun J, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of vegetables. J Agric Food Chem 50:6910–6916

    Article  PubMed  CAS  Google Scholar 

  • Cooper-Driver GA (2001) Contributions of Jeffrey Harborne and coworkers to the study of anthocyanins. Phytochemistry 56:229–236

    Article  PubMed  CAS  Google Scholar 

  • Detre Z, Jellinek H, Miskulin M, Robert AM (1986) Studies on vascular permeability in hypertension: action of anthocyanosides. Clin Physiol Biochem 4(2):143–149

    PubMed  CAS  Google Scholar 

  • Dragsted LO, Strube M, Larsen JC (1993) Cancer-protective factors in fruits and vegetables: biochemical and biological background. Pharmacol Toxicol 72:116–135

    Article  PubMed  Google Scholar 

  • Elia G, Amici C, Rossi A, Santoro MG (1996) Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70. Cancer Res 56(1):210–217

    PubMed  CAS  Google Scholar 

  • Facchiano F, D’Arcangelo D, Riccomi A, Lentini A, Beninati S, Capogrossi MC (2001) Transglutaminase activity is involved in polyamine-induced programed cell death. Exp Cell Res 271:118–129

    Article  PubMed  CAS  Google Scholar 

  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, de Takats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2(4):659–668

    PubMed  CAS  Google Scholar 

  • Fesus L (1993) Biochemical events in naturally occurrring forms of cell death. FEBS Lett 328:1–5

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ (1973) Selection of successive tumor cell lines for metastasis. Nature 245:148–149

    Article  Google Scholar 

  • Folk JE (1980) Transglutaminases. Ann Rev Biochem 49:517–531

    Article  PubMed  CAS  Google Scholar 

  • Galati G, O’ Brien P (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303

    Article  PubMed  CAS  Google Scholar 

  • Hansen RK, Oesterreich S, Lemieux P, Sarge KD, Fuqua SA (1997) Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun 239(3):851–856

    Article  PubMed  CAS  Google Scholar 

  • Koishi M, Hosokawa N, Sato M, Nakai A, Hirayoshi K, Hiraoka M, Abe M, Nagata K (1992) Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line. Jpn J Cancer Res 83(11):1216–1222

    PubMed  CAS  Google Scholar 

  • Lentini A, Abbruzzese A, Caraglia M, Marra M, Beninati S (2004) Protein-polyamine conjugation by transglutaminase in cancer cell differentiation. Amino Acids 26:331–337

    Article  PubMed  CAS  Google Scholar 

  • Lentini A, Autuori F, Mattioli P, Caraglia M, Abbruzzese A, Beninati S (2000) Evaluation of the efficacy of potential antineoplastic drugs on tumour metastasis by a computer-assisted image analysis. Eur J Cancer 36:1572–1577

    Article  PubMed  CAS  Google Scholar 

  • Lentini A, Beninati S (2002) Differentiation therapy of cancer: transglutaminase as diffentiative tool. Minerva Biotechnology 14:159–164

    Google Scholar 

  • Lentini A, Forni C, Provenzano B, Beninati S (2007) Enhancement of transglutaminase activity and polyamine depletion in B16–F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids 32(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Piantelli M, Maggiano N, Ricci R, Larocca LM, Capelli A, Scambia G, Isola G, Natali PG, Ranelletti FO (1995) Tamoxifen and quercetin interact with type II estrogen binding sites and inhibit the growth of human melanoma cells. J Invest Dermatol 105(2):248–253

    Article  PubMed  CAS  Google Scholar 

  • Ranelletti FO, Maggiano N, Serra FG, Ricci R, Larocca LM, Lanza P, Scambia G, Fattorossi A, Capelli A, Piantelli M (2000) Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int J Cancer 85(3):438–445

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Chu YF, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of fruits. J Agric Food Chem 50:7449–7454

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1976) 1, 4-Diaminobutane (putrescine), spermidine and spermine. Ann Rev Biochem 45:285–306

    Article  PubMed  CAS  Google Scholar 

  • Thacher SM, Rice RH (1985) Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell 40:685–695

    Article  PubMed  CAS  Google Scholar 

  • Thiele CJ, Gore S, Collins S, Waxman S, Miller W (2000) Differentiate or die: the view from Montreal. Cell Death Differ 7(10):1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Upchurch HF, Convay E, Patterson MK Jr, Birckbichler PJ, Maxwell MD (1987) Cellular transglutaminase has affinity for extracellular matrix. In Vitro Cell Dev Biol 23:795–800

    Article  PubMed  CAS  Google Scholar 

  • Waladkhani AR, Clemens MR (1998) Effect of dietary phytochemicals on cancer development. Int J Mol Med 1:747–753

    PubMed  CAS  Google Scholar 

  • Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JI, DeWitt DL (1999) Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62(2):294–306

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Yamamoto M, Nikaido T (1992) Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle. Cancer Res 52(23):6676–6681

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from MIUR (PRIN 2004, project no. 2004067819) and from the Russian Federation (Federal Education Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Beninati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forni, C., Braglia, R., Lentini, A. et al. Role of transglutaminase 2 in quercetin-induced differentiation of B16-F10 murine melanoma cells. Amino Acids 36, 731–738 (2009). https://doi.org/10.1007/s00726-008-0158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0158-y

Keywords

Navigation