Skip to main content
Log in

Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFβ-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FXIIIA:

Factor XIIIA

IL-1β:

Interleukin-1beta

TGF-β1:

Transforming growth factor-β1

TGs:

Transglutaminases

TG2:

Transglutaminase-2

References

  • Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41:1–27

    Article  PubMed  CAS  Google Scholar 

  • Aeschlimann D, Mosher D, Paulsson M (1996) Tissue transglutaminase and factor XIII in cartilage and bone remodeling. Semin Thromb Hemost 22:437–443

    Article  PubMed  CAS  Google Scholar 

  • Al-Jallad HF, Nakano Y, Chen JL, McMillan E, Lefebvre C, Kaartinen MT (2006) Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3–E1 osteoblast cultures. Matrix Biol 25:135–148

    Article  PubMed  CAS  Google Scholar 

  • Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR (1998) Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians 110:65–72

    PubMed  CAS  Google Scholar 

  • Blaney Davidson EN, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthritis Cartilage 15:597–604

    Article  PubMed  CAS  Google Scholar 

  • Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1:1349–1365

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Mehta K (1999) Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol 31:817–836

    Article  PubMed  CAS  Google Scholar 

  • Collins DH, McElligott TF (1960) Sulphate (35SO4) uptake by chondrocytes in relation to histological changes in osteoarthritic human articular cartilage. Ann Rheum Dis 19:318–330

    Article  PubMed  CAS  Google Scholar 

  • De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21:148–155

    Article  PubMed  Google Scholar 

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  PubMed  CAS  Google Scholar 

  • Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH (1998) Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-β1 gene. Bone 23:87–93

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DL, Cohen AS (1978) Synovial membrane histopathology in the differential diagnosis of rheumatoid arthritis, gout, pseudogout, systemic lupus erythematosus, infectious arthritis and degenerative joint disease. Medicine (Baltimore) 57:239–252

    CAS  Google Scholar 

  • Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43:1916–1926

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Masuda I, Ohira T, Yokoyama M (1989) A histological study of calcium pyrophosphate dihydrate crystal-deposition disease. J Bone Joint Surg Am 71:875–886

    PubMed  CAS  Google Scholar 

  • Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA, Terkeltaub RA (2005) External GTP-bound transglutaminase 2 is a molecular switch for chondrocyte hypertrophic differentiation and calcification. J Biol Chem 280:15004–15012

    Article  PubMed  CAS  Google Scholar 

  • Johnson K, Hashimoto S, Lotz M, Pritzker K, Terkeltaub R (2001) Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am J Pathol 159:149–163

    PubMed  CAS  Google Scholar 

  • Johnson KA, van Etten D, Nanda N, Graham RM, Terkeltaub RA (2003) Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy. J Biol Chem 278:18824–18832

    Article  PubMed  CAS  Google Scholar 

  • Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 13:632–641

    Article  PubMed  CAS  Google Scholar 

  • Karlson EW, Mandl LA, Aweh GN, Sangha O, Liang MH, Grodstein F (2003) Total hip replacement due to osteoarthritis: the importance of age, obesity, and other modifiable risk factors. Am J Med 114:93–98

    Article  PubMed  Google Scholar 

  • Marie P (1997) Growth factors and bone formation in osteoporosis: roles for IGF-I and TGF-beta. Rev Rhum Engl Ed 64:44–53

    PubMed  CAS  Google Scholar 

  • Nunes I, Gleizes PE, Metz CN, Rifkin DB (1997) Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136:1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Nurminskaya M, Magee C, Faverman L, Linsenmayer TF (2003) Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone. Dev Biol 263:139–152

    Article  PubMed  CAS  Google Scholar 

  • Ostendorf B, Scherer A, Wirrwar A, Hoppin JW, Lackas C, Schramm NU, Cohnen M, Mödder U, van den Berg WB, Müller HW, Schneider M, Joosten LA (2006) High-resolution multipinhole single-photon-emission computed tomography in experimental and human arthritis. Arthritis Rheum 54:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Pataki A, Reife R, Witzermann E, Graf HP, Schweizer A (1990) Quantitative radiographic diagnosis of osteo-arthritis at the knee joint in the C57BL mouse. Agents Actions 29:201–209

    Article  PubMed  CAS  Google Scholar 

  • Petersson IF, Jacobsson LT (2002) Osteoarthritis of the peripheral joints. Best Pract Res Clin Rheumatol 16:741–760

    Article  PubMed  Google Scholar 

  • Poole AR, Matsui Y, Hinek A, Lee ER (1989) Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec 224:167–179

    Article  PubMed  CAS  Google Scholar 

  • Ravaud P, Ayral X, Dougados M (1999) Radiologic progression of hip and knee osteoarthritis. Osteoarthritis Cartilage 7:222–229

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal AK, Derfus BA, Henry LA (1997) Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthritis Rheum 40:966–970

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal AC, Gohr L, Henry LA, Le M (2000) Participation of transglutaminase in the activation of latent transforming growth factor β1 in aging articular cartilage. Arthritis Rheum 43:1729–1733

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal AK, Mosesson MW, Gohr CM, Masuda I, Heinkel D, Seibenlist KR (2004) Regulation of transglutaminase activity in articular chondrocytes through thrombin receptor-mediated factor XIII synthesis. Thromb Haemost 91:558–568

    PubMed  CAS  Google Scholar 

  • Ryan LM, McCarty DJ (1997) Calcium pyrophosphate crystal deposition disease, pseudogout, and articular chondrocalcinosis. In: Koopman W (ed) Arthritis and allied conditions: a textbook of rheumatology, 13th edn. Williams and Wilkins, Baltimore, pp 2103–2126

    Google Scholar 

  • Sanchez C, Deberg MA, Bellahcène A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455

    Article  PubMed  CAS  Google Scholar 

  • Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (2002) Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169:507–514

    PubMed  CAS  Google Scholar 

  • Soder S, Hakimiyan A, Rueger DC, Kuettner KE, Aigner T, Chubinskaya S (2005) Antisense inhibition of osteogenic protein 1 disturbs human articular cartilage integrity. Arthritis Rheum 52:468–478

    Article  PubMed  CAS  Google Scholar 

  • van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB (1994) Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 71:279–290

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A. Ferlosio for his collaboration and L. Santangelo, S. Cappelli and A. Colantoni for their technical assistance. This study was partially financed by Prof. Orlandi’s and Prof. Tarantino’s 2007 Grants for Research from Tor Vergata University of Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Orlandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlandi, A., Oliva, F., Taurisano, G. et al. Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis. Amino Acids 36, 755–763 (2009). https://doi.org/10.1007/s00726-008-0129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0129-3

Keywords

Navigation