Skip to main content
Log in

Plasma catecholamine and nephrine responses to brief intermittent maximal intensity exercise

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Catecholamines (noradrenaline, NA; adrenaline, AD; dopamine, DA) influence the metabolic and cardiovascular responses to exercise. However, changes in catecholamine metabolism during exercise are unclear. Plasma normetanephrine (NMET), metanephrine (MET) and catecholamine responses to a laboratory-based model of games-type exercise were examined. Twelve healthy men completed a resting control trial and a trial consisting of ten 6 s cycle ergometer sprints interspersed with 30 s recovery, in randomised order. Resting and post-sprint venous blood samples were taken. Plasma NA and AD increased after each sprint but DA was unaltered. Plasma nephrines increased significantly from sprint 4 onwards with peak NMET increasing 60% to 0.76 ± 0.19 nmol l−1 and MET 230% to 0.37 ± 0.16 nmol l−1 from resting values (< 0.05). The results demonstrate increased catecholamine metabolism via elevated catechol-O-methyl transferase activity during intermittent sprinting. The results may aid regulation of the metabolic and cardiovascular responses to exercise by maintaining tissue adrenoceptor sensitivity to circulating catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balsom PD, Gaitanos GC, Ekblom B, Sjödin B (1994) Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiol Scand 152(3):279–285

    Article  PubMed  CAS  Google Scholar 

  • Bracken RM, Linnane DM, Brooks S (2005) Alkalosis and the plasma catecholamine response to high intensity exercise in man. Med Sci Sports Exerc 37(2):227–233

    Article  PubMed  CAS  Google Scholar 

  • Brooks S, Nevill ME, Meleagros L, Lakomy HKA, Hall GM, Bloom SR, Williams C (1990) The hormonal responses to repetitive brief maximal exercise in humans. Eur J App Physiol 60:144–148

    Article  CAS  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J App Physiol 37(2):247–248

    CAS  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349

    Article  PubMed  CAS  Google Scholar 

  • Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G (1990) Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 70(4):963–985

    PubMed  CAS  Google Scholar 

  • Febbraio MA, Lambert DL, Starkie RL, Proietto J, Hargreaves M (1998) Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J Appl Physiol 84(2):465–470

    Article  PubMed  CAS  Google Scholar 

  • Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719

    PubMed  CAS  Google Scholar 

  • Goldstein DS, Eisenhofer G, Kopin I (2003) Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Therap 305(3):800–811

    Article  CAS  Google Scholar 

  • Hagberg JM, Hickson RC, McLane JA., Ehsani AA, Winder WW (1979) Disappearance of norepinephrine from the circulation following strenuous exercise. J Appl Physiol 47(6):1311–1314

    Article  PubMed  CAS  Google Scholar 

  • Kaiser P, Tesch PA, Frisk-Holmberg M, Juhlin-Dannfelt A, Kaijser L (1986) Effect of beta 1-selective and non-selective beta-blockade on work capacity and muscle metabolism. Clin Physiol 6(2):197–207

    Article  PubMed  CAS  Google Scholar 

  • Kjær M (1999) Neuroendocrine regulation during exercise. In: Hargreaves M, Thompson M (eds) Biochemistry of exercise X. Human kinetics, pp 47–55

  • Kjær M, Christensen NJ, Sonne B, Richter EA, Galbo H (1985) Effect of exercise on epinephrine turnover in trained and untrained male subjects. J Appl Physiol 59(4):1061–1067

    PubMed  Google Scholar 

  • Lakomy HKA (1986) Measurement of work and power using friction loaded cycle ergometers. Ergonomics 29(4):509–517

    Article  PubMed  CAS  Google Scholar 

  • Lenders JWM, Keiser HR, Goldstein DS, Willemsen JJ, Friberg P, Jacobs M-C, Kloppenborg PWC, Thien T Eisenhofer G (1995) Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Inter Med 123(2):101–109

    CAS  Google Scholar 

  • Leuenberger U, Sinoway L, Gubin S, Gaul L, Davis D, Zelis R (1993) Effects of exercise intensity and duration on norepinephrine spillover and clearance in humans. J Appl Physiol 75(2):668–674

    PubMed  CAS  Google Scholar 

  • Maughan RJ (1982) A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-ul blood sample. Clin Chim Acta 122(2):231–240

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Watanabe T, Noshiro T, Shimizu K, Kusakari T, Akama H, Shibukawa S, Miura W, Ohzeki T, Takahashi M, Sano N (1995) Plasma free dopamine: physiological variability and pathophysiological significance. Hyperten Res 18:S65–S72

    Article  CAS  Google Scholar 

  • Murphy MB (2000) Dopamine: a role in the pathogenesis and treatment of hypertension. J Hum Hypert 14(S1):S47–S50

    Article  CAS  Google Scholar 

  • Odink J, Van den Berg EJ, Van den Berg H, Bogaards JJP Thissen JTNM (1986) Effect of workload on free and sulphoconjugated catecholamines, prolactin and cortisol. Int J Sports Med 7:352–357

    Article  PubMed  CAS  Google Scholar 

  • Pequignot JM, Peyrin L, Mayet MH, Flandrois R (1978) Metabolic adrenergic changes during submaximal exercise and in the recovery period in man. J Appl Physiol 47:701–705

    Article  Google Scholar 

  • Raber W, Raffesberg W, Waldhausl W, Gasic S, Roden M (2003) Exercise induces excessive normetanephrine responses in hypertensive diabetic patients. Eur J Clin Invest 33(6):480–487

    Article  PubMed  CAS  Google Scholar 

  • Sagnol M, Claustre J, Cottet-Emard JM, Pequignot JM, Fellmann N, Coudert J, Peyrin L (1990) Plasma free and sulphated catecholamines after ultra-long exercise and recovery. Eur J Appl Physiol 60:91–97

    Article  CAS  Google Scholar 

  • Sakai T, Maeda H, Matsumoto N, Miura S, Kinoshita A, Sasaguri M, Ideishi M, Tanaka H, Shindo M, Arakawa K (1995) Plasma free and sulfoconjugated dopamine before and after a half-marathon. Hyperten Res 18(suppl 1):S161–S163

    Article  CAS  Google Scholar 

  • Strobel G, Freidmann B, Siebold R, Bartsch P (1999) Effect of severe exercise on plasma catecholamines in differently trained athletes. Med Sci Sports Ex 31(4):560–565

    Article  CAS  Google Scholar 

  • Strobel G, Werle E, Weicker H (1990) Isomer specific kinetics of dopamine β-hydroxylase and arylsulfatase towards catecholamine sulfates. Biochem Intern 20(2):343–351

    CAS  Google Scholar 

  • Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J (1991) Renal neurohormonal and vascular responses to dynamic exercise in humans. J Appl Physiol 70(5):2279–2286

    PubMed  CAS  Google Scholar 

  • Wallin BG, Sundolf G, Eriksson BM, Dominiak P, Grobecker H, Lindblad LE (1981) Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand 111:69–73

    Article  PubMed  CAS  Google Scholar 

  • Weltman A, Wood CW, Womack CJ, Davis SE, Blumer JL, Alvarez J, Sauer K, Gaesser GA (1994) Catecholamine and blood lactate responses to incremental rowing and running exercise. J App Physiol 76(3):1144–1149

    Article  CAS  Google Scholar 

  • Winder WW, Yang HT, Jaussi AW, Hopkins CR (1987) Epinephrine, glucose, and lactate infusion in exercising adrenodemedullated rats. J Appl Physiol 62(4):1442–1447

    PubMed  CAS  Google Scholar 

  • Young JB Landsberg L (1998) Catecholamines and the adrenal medulla. In Wilson JD, Foster DW, Kronenberg HM, Larsen PR (eds) Williams textbook of endocrinology, 9th edn. WB Saunders and Co., Philadelphia, pp 665–728

  • Zamecnik J (1997) Quantification of epinephrine, norepinephrine, dopamine, metanephrine and normetanephrine in human plasma using negative ion chemical ionization GC-MS. Can J Anal Sci Spectroscop 42(4):106–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Bracken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracken, R.M., Linnane, D.M. & Brooks, S. Plasma catecholamine and nephrine responses to brief intermittent maximal intensity exercise. Amino Acids 36, 209–217 (2009). https://doi.org/10.1007/s00726-008-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0049-2

Keywords

Navigation