Skip to main content
Log in

Presence of kynurenic acid in food and honeybee products

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Kynurenic acid (KYNA) is an endogenous antagonist of ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor, showing anticonvulsant and neuroprotective activity. In this study, the presence of KYNA in food and honeybee products was investigated. KYNA was found in all 37 tested samples of food and honeybee products. The highest concentration of KYNA was obtained from honeybee products’ samples, propolis (9.6 nmol/g), honey (1.0–4.8 nmol/g) and bee pollen (3.4 nmol/g). A high concentration was detected in fresh broccoli (2.2 nmol/g) and potato (0.7 nmol/g). Only traces of KYNA were found in some commercial baby products. KYNA administered intragastrically in rats was absorbed from the intestine into the blood stream and transported to the liver and to the kidney. In conclusion, we provide evidence that KYNA is a constituent of food and that it can be easily absorbed from the digestive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • al-Khalil S, Alkofahi A, el-Eisawi D, al-Shibib A (1998) Transtorine, a new quinoline alkaloid from Ephedra transitoria. J Nat Prod 61:262–263

    Article  PubMed  CAS  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87

    Article  PubMed  CAS  Google Scholar 

  • Covasa M, Ritter RC, Burns GA (2000) NMDA receptor participation in control of food intake by the stomach. Am J Physiol Regul Integr Comp Physiol 278:R1362–R1368

    PubMed  CAS  Google Scholar 

  • Demitrack MA, Heyes MP, Altemus M, Pigott TA, Gold PW (1995) Cerebrospinal fluid levels of kynurenine pathway metabolites in patients with eating disorders: relation to clinical and biochemical variable. Biol Psychiatry 37:512–520

    Article  PubMed  CAS  Google Scholar 

  • Drieu K (1986) Preparation and definition of Ginkgo biloba extract. Presse Med 15:1455–1457

    PubMed  CAS  Google Scholar 

  • Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  PubMed  CAS  Google Scholar 

  • Hermanussen M, Tresguerres JA (2005) A new anti-obesity drug treatment: first clinical evidence that, antagonising glutamate-gated Ca2+ ion channels with memantine normalises binge-eating disorders. Econ Hum Biol 3:329–337

    Article  PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  • Jankovic SM, Milovanovic D, Matovic M, Iric-Cupic V (1999) The effects of excitatory amino acids on isolated gut segments of the rat. Pharmacol Res 39:143–148

    Article  PubMed  CAS  Google Scholar 

  • Jo YH, Wiedl D, Role LW (2005) Cholinergic modulation of appetite-related synapses in mouse lateral hypothalamic slice. J Neurosci 25:11133–11144

    Article  PubMed  CAS  Google Scholar 

  • Kaszaki J, Palasthy Z, Erczes D, Racz A, Torday C, Varga G, Vecsei L, Boros M (2008) Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20:53–62

    PubMed  CAS  Google Scholar 

  • Kazda H, Taylor N, Healy D, Walker D (1998) Maternal, umbilical, and amniotic fluid concentrations of tryptophan and kynurenine after labor or cesarean section. Pediatr Res 44:368–373

    Article  PubMed  CAS  Google Scholar 

  • Kuc D, Rahnama M, Tomaszewski T, Rzeski W, Wejksza K, Urbanik-Sypniewska T, Parada-Turska J, Wielosz M, Turski WA (2006) Kynurenic acid in human saliva—does it influence oral microflora? Pharmacol Rep 58:393–398

    PubMed  CAS  Google Scholar 

  • Kuc D, Zgrajka W, Parada-Turska J, Urbanik-Sypniewska T, Turski WA (2008) Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids. doi:10.1007/s00726-007-0631-z

  • Lee SW, Stanley BG (2005) NMDA receptors mediate feeding elicited by neuropeptide Y in the lateral and perifornical hypothalamus. Brain Res 1063:1–8

    Article  PubMed  CAS  Google Scholar 

  • Milart P, Urbanska EM, Turski WA, Paszkowski T, Sikorski R (2001) Kynurenine aminotransferase I activity in human placenta. Placenta 22:259–261

    Article  PubMed  CAS  Google Scholar 

  • Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2:249–260

    Article  PubMed  Google Scholar 

  • Obaid AL, Nelson ME, Lindstrom J, Salzberg BM (2005) Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system. J Exp Biol 208:2981–3001

    Article  PubMed  CAS  Google Scholar 

  • Orzaez Villanueva MT, Diaz MA, Bravo SR, Blazquez AG (2002) The importance of bee-collected pollen in the diet: a study of its composition. Int J Food Sci Nutr 53:217–224

    Article  PubMed  CAS  Google Scholar 

  • Parada-Turska J, Rzeski W, Zgrajka W, Majdan M, Kandefer-Szerszen M, Turski W (2006) Kynurenic acid, an endogenous constituent of rheumatoid arthritis synovial fluid, inhibits proliferation of synoviocytes in vitro. Rheumatol Int 26:422–426

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, Goodman JH, Schwarcz R (2000) Electrophysiological effects of exogenous and endogenous kynurenic acid in the rat brain: studies in vivo and in vitro. Amino Acids 19:283–297

    Article  PubMed  CAS  Google Scholar 

  • Shibata K (1988) Fluorimetric micro-determination of kynurenic acid, an endogenous blocker of neurotoxicity, by high-performance liquid chromatography. J Chromatogr 430:376–380

    Article  PubMed  CAS  Google Scholar 

  • Tsai LH (2005) Function of GABAergic and glutamatergic neurons in the stomach. J Biomed Sci 12:255–266

    Article  PubMed  CAS  Google Scholar 

  • Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO Jr, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169

    Article  PubMed  CAS  Google Scholar 

  • Turski WA, Gramsbergen JB, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to l-kynurenine. J Neurochem 52:1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.P. Turski and M. Turska are students, volunteers in the Department of Toxicology. This study was supported in part by grant nr 1.27/07 from the Institute of Agricultural Medicine, Lublin, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar A. Turski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turski, M.P., Turska, M., Zgrajka, W. et al. Presence of kynurenic acid in food and honeybee products. Amino Acids 36, 75–80 (2009). https://doi.org/10.1007/s00726-008-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0031-z

Keywords

Navigation