Skip to main content
Log in

63,65Cu NQR Spectra and Spin–Lattice Relaxation in Thermoelectric CuAlO2

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The 63,65Cu nuclear quadrupole resonance spectra and spin–lattice relaxation rate (1/T1) have been measured in the semiconductor compound CuAlO2. The value of the nuclei quadrupole interaction constant QCC = 56.24(6) MHz (T = 298 K) has been obtained. The broad maximum has been found in the temperature dependence of 1/T1 in the low-temperature region (below 276 K). This maximum can be associated with the presence of energy levels in the forbidden band. The activation energy has been estimated in CuAlO2 [EA = 45(2) meV], assuming the activation character of the mobility of holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.V. Dmitriev, I.P. Zvyagin, Phys. Usp. 53(8), 789 (2010)

    Article  ADS  Google Scholar 

  2. D.J. Singh, Phys. Rev. B 77, 126 (2008)

    Google Scholar 

  3. A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chttopadhyay, Thin Solid Films 474, 261 (2005)

    Article  ADS  Google Scholar 

  4. R.S. Abdullin, V.P. Kalchev, I.N. Penkov, Phys. Chem. Miner. 14(3), 258 (1987)

    Article  ADS  Google Scholar 

  5. W.W. Jr Warren, A. Rajabzadeh, T. Olheiser, J. Liu, J. Tate, M.K. Jayaraj, K.A. Vanaja, Solid State Nucl. Magn. Reson. 26, 209 (2004)

    Article  Google Scholar 

  6. V.L. Matukhin, I.H. Khabibullin, D.A. Shulgin, S.V. Schmidt, E.I. Terukov, Semiconductors 46(9), 1102 (2012)

    Article  ADS  Google Scholar 

  7. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599

    Google Scholar 

  8. V.L. Matukhin, D.A. Shulgin, S.V. Shmidt, E.I. Terukov, Semiconductors 48(6), 779 (2014)

    Article  ADS  Google Scholar 

  9. A.G. Zalazinskij, V.F. Balakirev, N.M. Chebotaev, G.I. Chufarov, Zhurn. Neorg. Khimii 14, 624 (1969)

    Google Scholar 

  10. Bruker. Almanac2005 (2005)

  11. A.I. Pogoreltsev, S.V. Schmidt, A.N. Gavrilenko, D.A. Shulgin, B.V. Korzun, V.L. Matukhin, J. Appl. Spectrosc. 82(3), 411 (2015)

    Article  ADS  Google Scholar 

  12. J. Tate, H.L. Ju, J.C. Moon, A. Zakutayev, A.P. Richard, J. Russell, D.H. McIntyre, Phys. Rev. B 80, 165206 (2009)

    Article  ADS  Google Scholar 

  13. A.A. Gippius, M. Baenitz, R.S. Okhotnikov, S. Johnsen, B. Iversen, A.V. Shevelkov, Appl. Magn. Reson. 45, 1237 (2014)

    Article  Google Scholar 

  14. T. Caldwell, A.P. Reyes, W.G. Moulton, P.L. Kuhns, M.J.R. Hoch, P. Schlottmann, Z. Fisk, Phys. Rev. B 75, 075106 (2007)

    Article  ADS  Google Scholar 

  15. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599

    Google Scholar 

  16. C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963), p. 246

    Google Scholar 

  17. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014), p. 782

    Book  Google Scholar 

Download references

Acknowledgements

The research was carried out within the state assignment of the Federal Agency for Scientific Organizations Russia (theme “Spin” no. AAAA-A18-118020290104-2) and partially supported by the project of the Ural Branch of the Russian Academy of Sciences no. 18-10-2-37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Matukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogloblichev, V.V., Matukhin, V.L., Arapova, I.Y. et al. 63,65Cu NQR Spectra and Spin–Lattice Relaxation in Thermoelectric CuAlO2. Appl Magn Reson 50, 619–625 (2019). https://doi.org/10.1007/s00723-018-1096-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1096-9

Navigation