Skip to main content
Log in

Low-Frequency Dynamics of Charge Carriers in CuAlO2 Semiconductor According to NMR Data

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The 63Cu and 27Al NMR spectra have been obtained on a polycrystalline CuAlO2 sample in external magnetic field H0 = 92.8 kOe in temperature range 30–400 K. Analysis of the 27Al NMR spectra has revealed that with temperature decrease, the NMR line shift 27K increases in magnitude and can be described by the Curie–Weiss law. Such a behavior can be attributed to the emergence of an effective magnetic moment at copper ions due to the motion of holes in the copper sublattice. In the low-temperature range, the maximum of the spin–lattice relaxation rate \(T_{1}^{{ - 1}}\) of 27Al nuclei is observed, which is most probably induced by thermally activated diffusion of holes. Analysis of experimental data on \(T_{1}^{{ - 1}}\) yields an estimate Ea ≈ 0.1–0.2 eV for the activation energy. The temperature dependences of the quadrupole interaction parameters indicate the crystal lattice compression along the a and c axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENES

  1. S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008).

    Article  ADS  Google Scholar 

  2. Yu. A. Sakhratov, L. E. Svistov, P. L. Kuhns, H. D. Zhou, and A. P. Reyes, Phys. Rev. B 94, 094410 (2016).

    Article  ADS  Google Scholar 

  3. T. T. A. Lummen, C. Strohm, H. Rakoto, and P. H. M. van Loosdrecht, Phys. Rev. B 81, 224420 (2010).

    Article  ADS  Google Scholar 

  4. M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett. 79, 2028 (2001).

    Article  ADS  Google Scholar 

  5. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature (London, U.K.) 389, 939 (1997).

    Article  ADS  Google Scholar 

  6. H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada, J. Appl. Phys. 88, 4159 (2000).

    Article  ADS  Google Scholar 

  7. B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev. B 64, 155114 (2001).

    Article  ADS  Google Scholar 

  8. H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B 76, 045209 (2007).

    Article  ADS  Google Scholar 

  9. M. Nolan, Thin Solid Films 516, 8130 (2008).

    Article  ADS  Google Scholar 

  10. B. Ingram, G. Gonzalez, and T. Mason, Chem. Mater. 16, 5616 (2004).

    Article  Google Scholar 

  11. J. Tate, H. L. Ju, J. C. Moon, A. Zakutayev, A. P. Richard, J. Russell, and D. H. McIntyre, Phys. Rev. B 80, 165206 (2009).

    Article  ADS  Google Scholar 

  12. V. V. Ogloblichev, V. L. Matukhin, I. Yu. Arapova, C. V. Schmidt, and R. R. Khusnutdinov, Appl. Magn. Res. 50, 619 (2019).

    Article  Google Scholar 

  13. A. G. Zapazinskii, V. F. Balakirev, N. M. Chebotaev, and G. I. Chufarov, Zh. Neorg. Khim. 14, 624 (1969).

    Google Scholar 

  14. V. L. Matukhin, I. H. Khabibullin, D. A. Shulgin, S. V. Schmidt, and E. I. Terukov, Semiconductors 46, 1102 (2012).

    Article  ADS  Google Scholar 

  15. A. G. Smol’nikov, V. V. Ogloblichev, S. V. Verkhovskii, K. N. Mikhalev, A. Yu. Yakubovskii, K. Kumagai, Yu. Furukava, A. F. Sadykov, Yu. V. Piskunov, A. P. Gerashchenko, S. N. Barilo, and S. V. Shiryaev, JETP Lett. 102, 674 (2015).

    Article  ADS  Google Scholar 

  16. A. G. Smol’nikov, V. V. Ogloblichev, S. V. Verkhovskii, K. N. Mikhalev, A. Yu. Yakubovskii, Y. Furukawa, Yu. V. Piskunov, A. F. Sadykov, S. N. Barilo, and S. V. Shiryaev, Phys. Met. Metallogr. 118, 134 (2017).

    Article  ADS  Google Scholar 

  17. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. Yu. Yakubovskii, E. A. Tishchenko, and A. A. Bush, J. Exp. Theor. Phys. 115, 666 (2012).

    Article  ADS  Google Scholar 

  18. J. J. Fitzgerald, S. D. Kohl, G. Piedra, S. F. Dec, and G. E. Maciel, Chem. Mater. 6, 1915 (1994).

    Article  Google Scholar 

  19. K. N. Mikhalev, A. Yu. Germov, A. E. Ermakov, M. A. Uimin, A. L. Buzlukov, and O. M. Samatov, Phys. Solid State 59, 514 (2017).

    Article  ADS  Google Scholar 

  20. A. Narath, in Hyperfine Interactions, Ed. by A. J. Freeman and R. B. Frankel (Academic, New York, 1967), p. 287.

    Google Scholar 

  21. E. R. Andrew and D. P. Tunstall, Proc. Phys. Soc. 78, 1 (1961).

    Article  ADS  Google Scholar 

  22. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  23. C. P. Slichter, Principles of Magnetic Resonance (Harper Row, New York, 1963).

    Google Scholar 

  24. V. I. Chizhik, Y. S. Chernyshev, A. V. Donets, V. Frolov, A. Komolkin, and M. G. Shelyapina, Magnetic Resonance and its Applications (Springer, Berlin, 2014).

    Book  Google Scholar 

  25. Magnetic Resonance, Ed. by C. K. Coogan, N. S. Ham, S. N. Stuart, J. R. Pilbrow, and G. V. H. Wilson (Plenum, New York, 1970).

    Google Scholar 

  26. M. Haouas, F. Taulelle, and C. Martineau, Progr. Nucl. Magn. Res. Spectr. 9495, 11 (2016).

  27. M. Aziziha, S. A. Byard, R. Beesely, J. P. Lewis, M. S. Seehra, and M. B. Johnson, AIP Adv. 9, 035030 (2019).

    Article  ADS  Google Scholar 

  28. M. Aziziha, R. Beesley, J. R. Magers, N. Mottaghi, M. B. Holcomb, J. P. Lewis, M. S. Seehra, and M. B. Johnson, J. Magn. Magn. Mater. 471, 495 (2019).

    Article  ADS  Google Scholar 

  29. A. Freeman and R. Frankel, Hyperfine Interactions (Academic, New York, 1967).

    Google Scholar 

  30. A. G. Smol’nikov, V. V. Ogloblichev, A. Yu. Germov, K. N. Mikhalev, A. F. Sadykov, Yu. V. Piskunov, A. P. Gerashchenko, A. Yu. Yakubovskii, M. A. Muflikhonova, S. N. Barilo, and S. V. Shiryaev, JETP Lett. 107, 134 (2018).

    Article  Google Scholar 

  31. P. Carretta, M. Corti, and A. Rigamonti, Phys. Rev. B 48, 3433 (1993).

    Article  ADS  Google Scholar 

  32. F. Raffa, M. Mali, J. Roos, D. Brinkmann, M. Matsumura, and K. Conder, Phys. Rev. B 58, 2724 (1998).

    Article  ADS  Google Scholar 

  33. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    Article  ADS  Google Scholar 

  34. O. Kanert, J. Steinert, H. Jain, and K. L. Ngai, J. Non-Cryst. Solids 131133, 1001 (1991).

  35. K. L. Ngai and A. K. Rizo, Phys. Rev. Lett. 76, 1296 (1996).

    Article  ADS  Google Scholar 

  36. D. Brinkmann, M. Mali, J. Roos, R. Messer, and H. Birli, Phys. Rev. B 26, 4810 (1982).

    Article  ADS  Google Scholar 

  37. S. Sen and J. F. Stebbins, Phys. Rev. 55, 3512 (1997).

    Article  ADS  Google Scholar 

  38. I. Svare, F. Borsa, D. R. Torgeson, and S. W. Martin, Phys. Rev. B 48, 9336 (1993).

    Article  ADS  Google Scholar 

  39. P. A. Beckmann, Phys. Rep. 171 (3), 85 (1988).

    Article  ADS  Google Scholar 

  40. W. W. Warren, Jr., A. Rajabzadeh, T. Olheiser, J. Liu, J. Tate, M. K. Jayaraj, and K. A. Vanaja, Solid State Nucl. Magn. Res. 26, 209 (2004).

    Article  Google Scholar 

  41. T. Ishiguro, N. Ishizawa, N. Mizutani, and M. Kato, J. Solid State Chem. 41, 132 (1982).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Volegov for discussions of the results on magnetic susceptibility.

Funding

This work was supported by the grant no. MK-6094.2021.1.2 from the President of the Russian Federation and was performed under the State assignment from the Ministry of Higher Education and Science of the Russian Federation (code “Function,” registration number AAAA-A19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ogloblichev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogloblichev, V.V., Smolnikov, A.G., Buzlukov, A.L. et al. Low-Frequency Dynamics of Charge Carriers in CuAlO2 Semiconductor According to NMR Data. J. Exp. Theor. Phys. 133, 567–573 (2021). https://doi.org/10.1134/S1063776121100083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121100083

Navigation