Skip to main content

Advertisement

Log in

Glycosylated Gadolinium as Potential Metabolic Contrast Agent vs Gd-DTPA for Metabolism of Tumor Tissue in Magnetic Resonance Imaging

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Modern imaging technologies such as mMRI employ contrast agents to visualize the tumor microenvironment; therefore, demand for contrast agents, with an enhanced sensitivity and tissue tumor-specific target, is very high. The purpose of this study synthesizes novel metabolic contrast agent (Gd-DTPA-DG) and evaluates accumulation in tumor tissue for early diagnostic cancer. The contrast agent was synthesized and characterized with using different techniques including dynamic light scattering, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Finally, MRI imaging performed to determine in vitro and in vivo relaxometry. Gd-DTPA-DG was specifically investigated in tissue tumor over a 45 min in vivo because of its ability to target metabolically active tumor tissue, and comparison with conventional contrast agent [Gd-DTPA (Magnevist, Bayer-USA)]. According to the result, the maximum image signal intensity in different concentrations (0.02 to approximately 0.8 mM), longitudinal relaxation time (T 1) and transverse relaxation time (T 2) were obtained. Signal intensity of tumor tissue was shown at 15 and 30 min after injection reaches maximum for Gd-DTPA-DG and Gd-DTPA (Magnevist, Bayer-USA), respectively. But Gd-DTPA-DG shown signal intensity higher of Gd-DTPA (Magnevist, Bayer-USA) over 45 min, comparison with Gd-DTPA (Magnevist, Bayer-USA). Images showed metabolic contrast agent penetrate into cells and accumulated in tumor. These results showed that the novel metabolic contrast agent could become a useful tool in early detection of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. New cancer cases will grow 30 % by 2020. Economist Intelligence Unit. Available from http://www.eiu.com (2009)

  2. K. Brindle, Nat. Rev. Cancer 8(2), 107–194 (2008)

    Article  Google Scholar 

  3. S.S. Gambhir, Nat. Rev. Cancer 2(9), 683–693 (2002)

    Article  Google Scholar 

  4. N.K. Logothetis, Nature 453, 869–878 (2008)

    Article  ADS  Google Scholar 

  5. D.G. Mitchell, MRI principles (W. B. Saunders Company, Philadelphia, 1999)

    Google Scholar 

  6. E.J. Delikatny, H. Poptani, Radiol. Clin. North Am. 43, 205–220 (2005)

    Article  Google Scholar 

  7. G.A. Pereira, C.F.G.C. Geraldes, Ann. Magn. Reson. 6(1),1–33 (2007)

    Google Scholar 

  8. A. Hengerer, J. Grimm, Biomed Imaging Interv J. 2(2), 1–7 (2006)

    Article  Google Scholar 

  9. J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, P. Decuzzi, Nat. Nanotechnol. 5, 815–821 (2007)

  10. S. Geninatti Crich, C. Cabella, A. Barge, S. Belfiore, C. Ghirelli, L. Lattuada, S. Lanzardo, A. Mortillaro, L. Tei, M. Visigalli, G. Forni, S. Aime, J. Med. Chem. 49, 4926–4936 (2006)

    Article  Google Scholar 

  11. G. Kroemer, J. Pouyssegur, Cancer Cell. 13, 472–482 (2008)

    Article  Google Scholar 

  12. R.A. Gatenby, R.J. Gillies, Nat. Rev. Cancer 4, 891–899 (2004)

    Article  Google Scholar 

  13. V.K. Jain, V.K. Kalia, R. Sharma, V. Maharajan, M. Memnon, Int. J. Radiat. Oncol. Biol. Phys. 11, 943–950 (1985)

    Article  Google Scholar 

  14. E.K. Pauwels, Nucl. Med. Biol. 25, 317–322 (1998)

    Article  Google Scholar 

  15. D.J. Yang, C.G. Kim, N.R. Schechter, A. Azhdarinia, D.F. Yu, C.S. Oh, J.L. Bryant, J.J. Won, E.E. Kim, D.A. Podoloff, Radiology 226, 465–473 (2003)

    Article  Google Scholar 

  16. W. Zhang, Y. Chen, J. Guo da, Z.W. Huang, L. Cai, L. He, Eur. J. Radiol. 79, 369–374 (2011)

    Article  Google Scholar 

  17. M. Amanlou, S.D. Siadat, S.E.S. Ebrahimi, A. Alavi, M.R. Aghasadeghi, M.S. Ardestani, S. Shanehsaz, M. Ghorbani, B. Mehravi, M. Shafiee Alavidjeh, A. Jabbari-Arabzadeh, M. Abbasi, Int. J. Nanomedicine 6, 747–763 (2011)

    Article  Google Scholar 

  18. G. Azizian, N. Riyahi-Alam, S. Haghoo, H.R. Moghimi, R. Zohdiaghdam, B. Rafiei, E. Gorji, Mater. Sci. Pol. 20133. 8, 425–429 (2013)

    Google Scholar 

  19. N. Riyahi-Alam, Z. Behrouzkia, A. Seifalian, S. Haghgoo Jahromi, Biol. Trace Elem. Res. 137(3), 324–334 (2010)

    Article  Google Scholar 

  20. V. Ganapathy, M. Thangaraju, P.D. Prasad, Pharmacol. Ther. 121(1), 29–40 (2009)

    Article  Google Scholar 

  21. C. Cheze-Le Rest, J.P. Metges, P. Teyton, V. Jestin-Le Tallec, P. Lozac'h, A. Volant, D. Visvikis, Nucl. Med. Commun. 29, 628–663 (2008)

    Article  Google Scholar 

  22. P. Parente, A. Coli, G. Massi, A. Mangoni, M.M. Fabrizi, G.I. Bigotti, J. Exp. Clin. Cancer Res. 27, 34–40 (2008)

    Article  Google Scholar 

  23. D. Yang, M. Yukihiro, D.F. Yu, M. Ito, C.S. Oh, S. Kohanim, A. Azhdarinia, C.G. Kim, J. Bryant, E.E. Kim, D. Podoloff, Cancer Biother Radiopharm. 19(4), 443–456 (2004)

    Article  Google Scholar 

  24. Y. Chen, Z.W. Huang, L. He, S.L. Zheng, J.L. Li, D.L. Qin, Appl. Radiat. Isot. 64(3), 342–347 (2006)

    Article  Google Scholar 

  25. Y.Y. Sun, Y. Chen, Curr. Pharm. Des. 15(9), 983–987 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the research chancellor of Tehran University of Medical Sciences (TUMS) Tehran-Iran. We thank Mr. Mehdi Gholami and Ahmad Shamsa for them valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Heydarnezhadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydarnezhadi, S., Riahi Alam, N., Haghgoo, S. et al. Glycosylated Gadolinium as Potential Metabolic Contrast Agent vs Gd-DTPA for Metabolism of Tumor Tissue in Magnetic Resonance Imaging. Appl Magn Reson 47, 375–385 (2016). https://doi.org/10.1007/s00723-015-0756-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0756-2

Keywords

Navigation