Skip to main content
Log in

Quantitative Medium-Resolution NMR Spectroscopy Under Non-Equilibrium Conditions, Studied on the Example of an Esterification Reaction

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Medium-resolution nuclear magnetic resonance spectroscopy is a promising tool for the monitoring of liquid reactions. For process analytical applications, the requirements of robustness and insensitivity of the spectrometer in relation to high temperatures and pressures are challenging. Within this study, a flow probe using a glass dewar is presented. Temperatures of flowing samples up to 130 °C and pressures up to 40 bar were successfully applied, and the corresponding temperature loss of the flowing sample at 2 ml min−1 was <2.4 °C at 130 °C. Furthermore, if the process requires a measurement in a non-equilibrium state of magnetization, a comprehensive data treatment is given. For this purpose, the influences of the flow and T 1 of the substances under investigation are studied in detail on the example of a homogeneously catalyzed esterification. In addition, data analysis schemes were designed such that the experiments directly revealed mole fractions from the spectra. Limited spectral resolutions and low signal-to-noise ratio still did not obstruct quantitative interpretation of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Blümich, J. Perlo, F. Casanova, Prog. Nucl. Magn. Reson. Spectrosc. 52, 197–269 (2008)

    Article  Google Scholar 

  2. L.A. Colnago, M. Engelsberg, A.A. Souza, L.L. Barbaso, Anal. Chem. 79, 1271–1274 (2007)

    Article  Google Scholar 

  3. A. Guthausen, G. Guthausen, A. Kamlowski, H. Todt, W. Burk, D. Schmalbein, J. Am. Oil Chem. Soc. 81, 727–731 (2004)

    Article  Google Scholar 

  4. J. Corver, G. Guthausen, A. Kamlowski, Pharm. Eng. 25, 18–30 (2005)

    Google Scholar 

  5. American Oil Chemist Society, Solid fat content (SFC) by low resolution magnetic resonance. AOCS official method Cd 16b-93, Cd 16-81 (Standard of AOCS, 1993)

  6. J. Mitchell, L.F. Gladden, T.C. Chandrasekera, E.J. Fordham, Prog. Nucl. Magn. Reson. Spectrosc. 76, 1–60 (2014)

    Article  Google Scholar 

  7. F. Dalitz, M. Cudaj, M. Maiwald, G. Guthausen, Prog. Nucl. Magn. Reson. Spectrosc. 60, 52–70 (2012)

    Article  Google Scholar 

  8. T.W. Skloss, A.J. Kim, J.F. Haw, Anal. Chem. 66, 536–542 (1994)

    Article  Google Scholar 

  9. A. Nordon, C.A. McGill, D. Littlejohn, Analyst 126, 260–272 (2001)

    Article  ADS  Google Scholar 

  10. G. Guthausen, A. von Garnier, R. Reimert, Appl. Spectr. 63, 1121–1127 (2009)

    Article  ADS  Google Scholar 

  11. M.A. Vargas, M. Cudaj, K. Hailu, K. Sachsenheimer, G. Guthausen, Macromolecules 43, 5561–5568 (2010)

    Article  ADS  Google Scholar 

  12. Y. Garro Linck, M.H.M. Killner, E. Danieli, B. Blümich, Appl. Magn. Reson. 44, 41–53 (2013)

    Article  Google Scholar 

  13. A.I. Zhernovoi, G.D. Latyshev, Nuclear Magnetic Resonance in a Flowing Liquid (Consultants Bureau, New York, 1965)

  14. A. Nordon, A. Diez-Lazaro, C.W.L. Wong, C.A. McGill, D. Littlejohn, M. Weerasinghe, D.A. Mamman, M.L. Hitchman, J. Wilkie, Analyst 133, 339–347 (2008)

    Article  ADS  Google Scholar 

  15. R.L. Haner, Flow tube for NMR probe, U.S. 5867026 A (U.S. patent, Varian Associates Inc., 1999)

  16. F. Dalitz, M. Maiwald, G. Guthausen, Chem. Eng. Sci. 75, 318–326 (2012)

    Article  Google Scholar 

  17. A. Nordon, P.J. Gemperline, C.A. McGill, D. Littlejohn, Anal. Chem. 73, 4286–4294 (2001)

    Article  Google Scholar 

  18. G. Guthausen, A. Kamlowski, in Magnetic Resonance in Food Science: Challenges in a Changing World, ed. by M. Guojonsdottir, P. Belton, G.A. Webb (RSC Publisher, Cambridge, 2009), p. 46

    Google Scholar 

  19. M. Cudaj, G. Guthausen, A. Kamlowski, D. Maier, T. Hofe, M. Wilhelm, Nachr. Chem. 58, 1155–1157 (2010)

    Article  Google Scholar 

  20. R. Freeman, H.D.W. Hill, J. Chem. Phys. 54, 3367–3377 (1971)

    Article  ADS  Google Scholar 

  21. M. Cudaj, PhD thesis, Institute of Chemical Technology and Polymer Chemistry, KIT, Karlsruhe (2011)

  22. AIST, SDBS: spectral database for organic compounds. (National Institute of Advanced Industrial Science and Technology (AIST), Japan, 2013), http://sdbs.db.aist.go.jp. Accessed 5 March 2013

  23. M. Maiwald, H.H. Fischer, Y.K. Kim, K. Albert, H. Hasse, J. Magn. Reson. 166, 135–146 (2004)

    Article  ADS  Google Scholar 

  24. E.H.L. Yuen, A.J. Sederman, L.F. Gladden, Appl. Catal. A-Gen 232, 29–38 (2002)

    Article  Google Scholar 

  25. M. Cudaj, J. Cudaj, T. Hofe, L. Luy, M. Wilhelm, G. Guthausen, Macromol. Chem. Phys. 213, 1833–1840 (2012)

    Article  Google Scholar 

  26. J.F. Haw, T.E. Glass, H.C. Dorn, J. Magn. Reson. 49, 22–31 (1982)

    ADS  Google Scholar 

  27. P.M. Denis, G.J. Béné, R.C. Exterman, Arch. Sci. 5, 32–34 (1952)

    Google Scholar 

  28. W. Herms, Ann. Physik 8, 280–286 (1961)

    Article  ADS  Google Scholar 

  29. D.W. Arnold, L.E. Burkhart, J. Appl. Phys. 36, 870–871 (1965)

    Article  ADS  Google Scholar 

  30. S. Grob, H. Hasse, Ind. Eng. Chem. Res. 45, 1869–1874 (2006)

    Article  Google Scholar 

  31. K. Alejski, F. Duprat, Chem. Eng. Sci. 51, 4237–4252 (1996)

    Article  Google Scholar 

  32. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions. The International Series of Monographs on Chemistry, ed. J.S. Rowlinson. (Clarendon Press, Oxford, 1994)

  33. H.J. Arnikar, T.S. Rao, A.A. Bodhe, J. Chromatogr. 47, 265–268 (1970)

    Article  Google Scholar 

  34. U.S. National Bureau of Standards, Tables of chemical kinetics: homogeneous reactions (U.S. Dept. Of Commerce, NBS, Washington, DC, 1964)

Download references

Acknowledgments

The DFG is gratefully acknowledged for providing financial support for the instrumental facility center Pro2NMR as well as for the project on medium resolution NMR spectroscopy at KIT and BAM. Additionally, the assistance of P. Teppert and B. Schuhmann during the experiments is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Guthausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalitz, F., Kreckel, L., Maiwald, M. et al. Quantitative Medium-Resolution NMR Spectroscopy Under Non-Equilibrium Conditions, Studied on the Example of an Esterification Reaction. Appl Magn Reson 45, 411–425 (2014). https://doi.org/10.1007/s00723-014-0522-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0522-x

Keywords

Navigation