Skip to main content
Log in

FDTD Analysis of a Radiofrequency Knee Coil for Low-Field MRI: Sample-Induced Resistance and Decoupling Evaluation

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) using high static field (>3T) generates high-quality images, thanks to high homogeneity in transmission as well as high signal-to-noise ratio (SNR) in reception. On the other hand, biological effects are proportional to the magnetic field strength and moreover the diagnostic accuracy is not always linked to high-quality imaging. For these reasons, the interest in low-field imaging becomes greater, also because of cheaper setting, greater patients comfort and more safety profile. In simple cases, as for surface coil, the coil performance is evaluated using classical electromagnetic theory, but for more complex geometry and in presence of a sample, is more difficult to evaluate the solution and often is necessary to follow a trial-and-error approach. Numerical methods represent a solution to this problem. In this work, we performed numerical simulation on a two-channel knee coil for low-field (0.5 T) MRI scanner. We are interested in seeing the effect of a sample placed inside the coil on the sample-induced resistance and decoupling between channels. In particular, we observe how the position of the sample inside the channel influences the resistance value and for performing this we compared an innovative method based on the exponential fitting on voltage oscillation damping with a validated method (estimation using quality factor). Finally, for the complete coil, the scatter parameters were calculated in loaded and unloaded conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Giovannetti, R. Francesconi, L. Landini, M.F. Santarelli, V. Positano, V. Viti, A. Benassi, Concepts Magn. Reson. B 20B(1), 9–16 (2004)

    Article  Google Scholar 

  2. V. Hartwig, G. Giovannetti, N. Vanello, M. Lombardi, L. Landini, S. Simi, Int. J. Environ. Res. Public Health 6, 1778–1798 (2009)

    Article  Google Scholar 

  3. B.K. Rutt, D.H. Lee, J. Magn. Reson. Imaging 6, 57–62 (1996)

    Article  Google Scholar 

  4. A.D. Vellet, D.H. Lee, P.L. Munk, L. Hewett, M. Eliasziw, S. Dunlavy, L. Vidito, P.J. Fowler, A. Miniaci, Radiol. 197, 826–830 (1995)

    Google Scholar 

  5. P.M. Parizel, H.A. Dijkstra, G.P. Geenen, P.A. Kint, R.J. Versteylen, P.J. van Wiechen, A.M. De Schepper, Eur. J. Radiol. 19, 132–138 (1995)

    Article  Google Scholar 

  6. S. Simi, M. Ballardin, M. Casella, D. De Marchi, V. Hartwig, G. Giovannetti, N. Vanello, S. Gabbriellini, L. Landini, M. Lombardi, Mutat. Res. 645, 39–43 (2008)

    Google Scholar 

  7. V. Hartwig, G. Giovannetti, N. Vanello, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 38, 337–348 (2010)

    Article  Google Scholar 

  8. V. Hartwig, N. Vanello, G. Giovannetti, M. Lombardi, L. Landini, M.F. Santarelli, Magn. Reson. Mater. Phys. Biol. Med. 24, 323–330 (2011)

    Article  Google Scholar 

  9. G. Giovannetti, L. Landini, M.F. Santarelli, V. Positano, Magn. Reson. Mater. Phys. Biol. 15, 36–44 (2002)

    Google Scholar 

  10. K.S. Yee, Trans. Ant. Propag. 14, 302–307 (1966)

    ADS  MATH  Google Scholar 

  11. T.S. Ibrahim, R. Lee, B.A. Baertlein, Y. Yu, P.M.L. Robitaille, Magn. Reson. Imaging 18, 835–843 (2000)

    Article  Google Scholar 

  12. C.M. Collins, M.B. Smith, Magn. Reson. Med. 45, 692–699 (2001)

    Article  Google Scholar 

  13. J.H. Seo, H.Y. Heo, B.H. Han, S.Y. Lee. in Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, 2007, FrD03.6

  14. W. Liu, C.M. Collins, M.B. Smith, Appl. Magn. Reson. 29, 5–18 (2005)

    Article  Google Scholar 

  15. C. Guclu, G. Kashmar, A. Hacinliyan, O. Nalcioglu, Magn. Reson. Med. 37(1), 76–83 (1997)

    Article  Google Scholar 

  16. J.H. Chen, S.K. Jeng, F.H. Lin, W.P. Kuan, IEEE Trans. Magn. 35(4), 2118–2127 (1999)

    Google Scholar 

  17. D.M. Sullivan, Electromagnetic Simulation Using the FDTD Method, ed. by R.D. Pollard, R. Booton, IEEE Press Series on RF and Microwave Technology (IEEE Press, New York, 2000)

  18. A. Taflove, Wave Motion 10, 547–582 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Hartwig, S. Tassano, A. Mattii, N. Vanello, V. Positano, M.F. Santarelli, L. Landini, G. Giovannetti, Appl. Magn. Reson. 44, 389–400 (2013)

    Article  Google Scholar 

  20. G. Giovannetti, V. Viti, V. Hartwig, Y. Liu, W. Yu, R. Mittra, L. Landini, A. Benassi, Int. J. Biomed. Eng. Technol. 4(1), 18–28 (2010)

    Article  Google Scholar 

  21. G. Giovannetti, V. Viti, L. Yongjun, W. Yu, R. Mittra, L. Landini, A. Benassi, Concepts Magn. Reson. B 33B(4), 209–215 (2008)

    Google Scholar 

  22. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 40, 351–361 (2011)

    Article  Google Scholar 

  23. A. Agarwal, J.H. Lang, Foundations of Analog and Digital Electric Circuit (Morgan Kaufmann, San Francisco, 2005), pp. 640–648

  24. D.M. Pozar (ed.), Microwave Engineering, 4th edn. (John Wiley & Sons, Hoboken, 2012), pp. 178–179

  25. D.I. Hoult, Concepts Magn. Reson. 12, 173–187 (2000)

    Article  Google Scholar 

  26. J.P. Berenger, J. Comput. Phys. 22, 185–200 (1994)

    Google Scholar 

  27. C. Penney, Microwave J. 50(12), 118–122 (2007)

  28. J. Wang, A. Reykowski, J. Dickas, IEEE Trans. Biomed. Eng. 42, 908–917 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sole Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, M.S., Hartwig, V., Tassano, S. et al. FDTD Analysis of a Radiofrequency Knee Coil for Low-Field MRI: Sample-Induced Resistance and Decoupling Evaluation. Appl Magn Reson 44, 1393–1403 (2013). https://doi.org/10.1007/s00723-013-0488-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0488-0

Keywords

Navigation