Skip to main content
Log in

Numerical Calculation of Peak-to-Average Specific Absorption Rate on Different Human Thorax Models for Magnetic Resonance Safety Considerations

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is considered a safe technology since it relies only on spatial encoding of the position of atomic nuclei (mainly protons) in a static magnetic field irradiating them with radio-frequency (RF) pulses instead of ionizing radiation. Specific absorption rate (SAR) is the most frequently used parameter for monitoring and quantifying the power deposition on a subject during an MRI examination. The peak-to-average SAR ratio is important information for the MRI operator during the acquisition sequence setup. In this work, a birdcage body coil model is used for RF excitation of several inhomogeneous human thorax models with different sizes and weights. To study the peak-to-average SAR ratio correlation with sample metrics, numerical simulations using the finite difference time domain method were performed to estimate the peak and average SAR values on the entire sample volume. Results for 11 different thorax models indicate a strong correlation between the peak-to-average SAR value and the sample metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Formica, S. Silvestri, BioMed. Eng. OnLine, 3–11 (2004)

  2. V. Hartwig, G. Giovannetti, N. Vanello, M. Lombardi, L. Landini, S. Simi, Int. J. Environ. Res. Pub. Health 6, 1778–1798 (2009)

    Article  Google Scholar 

  3. D.E. McRobbie, E.A. Moore, M.J. Graves, M.R. Prince, MRIFrom Picture to Proton (Cambridge University Press, Cambridge, 2006)

  4. F.M. Vogt, M.E. Ladd, P. Hunold, S. Mateiescu, F.X. Hebrank, A. Zhang, J.F. Debatin, S.C. Göhde, Radiology 233, 548–554 (2004)

    Article  Google Scholar 

  5. D.J. Schaefer, J.D. Bourland, J.A. Nyenhuis, J. Magn. Reson. Imaging 12, 20–29 (2000)

    Article  Google Scholar 

  6. F. Krasin, H. Wagner, in Encyclopedia of Medical Devices and Instrumentation, ed. by J.G. Webster (Wiley, Hoboken, 1988)

  7. C. Polk, in Handbook of Biomedical Engineering, ed. by J. Bronzino (CRC Press, USA, 1995)

  8. F.G. Shellock, J. Magn. Reson. Imaging 12, 30–36 (2000)

    Article  Google Scholar 

  9. M.A. Ali, Romanian J. Biophys. 17(4), 277–286 (2007)

    Google Scholar 

  10. S. Simi, M. Ballardin, M. Casella, D. De Marchi, V. Hartwig, G. Giovannetti, N. Vanello, S. Gabbriellini, L. Landini, M. Lombardi, Mutat. Res. 645, 39–43 (2008)

    Google Scholar 

  11. D.I. Hoult, J. Magn. Reson. Imaging 12, 46–67 (2000)

    Article  Google Scholar 

  12. International Electrotechnical Commission: International standard: Part 2. Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. CEI/IEC 60601-2-33 (2002)

  13. Z. Wang, J.C. Lin, W. Mao, W. Liu, M.B. Smith, C.M. Collins, J. Magn. Reson. Imaging 26, 437–441 (2007)

    Article  Google Scholar 

  14. IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz–300 GHz. IEEE Std C95.3-2002 (Revision of IEEE Std C95.3-1991), pp. i–126 (2002). doi:10.1109/IEEESTD.2002.94226

  15. P.A. Bottomley, R.W. Redington, W.A. Edelstein, J.F. Schenck, Magn. Reson. Med. 2, 336–349 (1985)

    Article  Google Scholar 

  16. W. Liu, C.M. Collins, M.B. Smith, Appl. Magn. Reson. 29, 5–18 (2005)

    Article  Google Scholar 

  17. H. Cline, R. Mallozzi, Z. Li, G. McKinnon, W. Barber, Magn. Reson. Med. 51, 1129–1137 (2004)

    Article  Google Scholar 

  18. G. Brix, M. Reinl, G. Brinker, Magn. Reson. Imaging 19, 769–779 (2001)

    Article  Google Scholar 

  19. J.W. Hand, Phys. Med. Biol. 53, R243–R286 (2008)

    Article  ADS  Google Scholar 

  20. O.P. Gandhi, X.B. Chen, Magn. Reson. Med. 41, 816–823 (1999)

    Article  Google Scholar 

  21. K.S. Yee, IEEE Trans. Ant. Propag. 14, 302–307 (1966)

    Article  MATH  ADS  Google Scholar 

  22. C.M. Collins, M.B. Smith, Magn. Reson. Med. 45, 684–691 (2001)

    Article  Google Scholar 

  23. ICNIRP Statement, Health Phys. 87(2), 197–216

  24. K.S. Kunz, R.J. Luebbers, The finite difference time domain method for electromagnetics (CRC, Ann Arbor, 1993)

    Google Scholar 

  25. GEMS, Computer and Communication Unlimited, PA, USA (2008). http://www.2comu.com

  26. GID, International Center for Numerical Methods in Engineering, Barcelona, Spain (2009). http://gid.cimne.upc.es/index.html (accessed 14 December 2009)

Download references

Acknowledgments

We wish to thank Prof. P.A. Bottomley for his expert advice and Dr. D. Yeo for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Hartwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwig, V., Giovannetti, G., Vanello, N. et al. Numerical Calculation of Peak-to-Average Specific Absorption Rate on Different Human Thorax Models for Magnetic Resonance Safety Considerations. Appl Magn Reson 38, 337–348 (2010). https://doi.org/10.1007/s00723-010-0126-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0126-z

Keywords

Navigation