Skip to main content
Log in

Temperature Dependence of Hyperfine Interaction for 15N Nitroxide in a Glassy Matrix at 10–210 K

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Principal 15N hyperfine interaction (hfi) values in 15N-substituted nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl dissolved in nematic liquid crystal 4-pentyl-4′-cyanobiphenyl (5CB) were measured in a wide temperature range of 10–210 K, for 5CB frozen to a glassy state. X-band continuous-wave electron paramagnetic resonance (CW EPR) and pulse X- and Q-band 15N electron-nuclear double resonance (ENDOR) techniques were employed. To avoid microwave saturation at low temperatures in CW EPR studies, a holmium complex Ho(Dbm)3Bpy (where Dbm is dibenzoylmethane and Bpy is 2,2′-bipyridine) was added. X- and Q-band 15N-ENDOR data have shown that the nitroxide hfi tensor is axially symmetric. The combination of data from all techniques allowed us to obtain the temperature dependence of isotropic and anisotropic parts of the nitroxide hfi tensor. Above ~100 K, a linear dependence of the anisotropic hfi value was observed, whereas below 30 K it was found to be nearly temperature independent. Such a behavior can be interpreted using the model of restricted orientational motions (librations) of a spin probe in a glassy matrix, with quantum effects occurring at low temperature (“freezing” of the librations). The energy quantum for the libration motion estimated from the temperature dependence of hfi of the spin probe is 84 cm−1. Low-frequency Raman spectra of 5CB were also obtained, which provided the mean vibrational frequency of 76 cm−1 for glassy 5CB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Marsh, Appl. Magn. Reson. 37, 435 (2010)

    Article  Google Scholar 

  2. D. Marsh, Proc. Natl. Acad. Sci. USA 98, 7777 (2001)

    Google Scholar 

  3. H.J. Steinhoff, J. Biochem. Biophys. Meth. 17, 237 (1988)

  4. J.S. Hwang, R.P. Mason, L.-P. Hwang, J.H. Freed, J. Phys. Chem. 79, 489 (1975)

    Article  Google Scholar 

  5. J.I. Spielberg, E.J. Gelerinter, Chem. Phys. 77, 2159 (1982)

    ADS  Google Scholar 

  6. N. Ohta, K. Kuwata, J. Chem. Phys. 82, 3420 (1985)

    Article  ADS  Google Scholar 

  7. S.V. Paschenko, Yu.V. Toropov, S.A. Dzuba, Yu.D. Tsvetkov, A.Kh. Vorobiev, J. Chem. Phys. 110, 8150 (1999)

    Google Scholar 

  8. O.G. Poluektov, O.Y. Grinberg, A.A. Dubinskii, L.V. Lukyanenko, Y.S. Lebedev, Russ. J. Phys. Chem. 62, 1067 (1988)

    Google Scholar 

  9. K.A. Earle, J.K. Moscicki, A. Polimeno, J.H. Freed, J. Chem. Phys. 106, 9996 (1997)

    Article  ADS  Google Scholar 

  10. G.L. Millhauser, J.H. Freed, J. Chem. Phys. 81, 37 (1984)

    Article  ADS  Google Scholar 

  11. S.A. Dzuba, Yu.D. Tsvetkov, A.G. Maryasov, Chem. Phys. Lett. 188, 217 (1992)

    Article  ADS  Google Scholar 

  12. R. Konda, J.L. Du, S.S. Eaton, G.R. Eaton, Appl. Magn. Reson. 7, 185 (1994)

    Article  Google Scholar 

  13. S.A. Dzuba, Phys. Lett. A 213, 77 (1996)

    Article  ADS  Google Scholar 

  14. M. Rohrer, P. Gast, K. Möbius, T.F. Prisner, Chem. Phys. Lett. 259, 523 (1996)

    Article  ADS  Google Scholar 

  15. E.P. Kirilina, S.A. Dzuba, A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 21, 203 (2001)

    Article  Google Scholar 

  16. S.A. Dzuba, E.S. Salnikov, L.V. Kulik, Appl. Magn. Reson. 30, 637 (2006)

    Article  Google Scholar 

  17. S.A. Dzuba, Pure Appl. Chem. 64, 825 (1992)

    Article  Google Scholar 

  18. D. Leporini, V. Schädler, U. Wiesener, H.W. Spiess, G. Jeschke, J. Chem. Phys. 119, 11829 (2003)

    Article  ADS  Google Scholar 

  19. S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, L.V. Kulik, J. Chem. Phys. 122, 094702 (2005)

    Article  ADS  Google Scholar 

  20. S.A. Dzuba, Yu.D. Tsvetkov, Khim. Fiz. 1, 1197 (1982)

    Google Scholar 

  21. S.A. Dzuba, A.G. Maryasov, K.M. Salikhov, Yu.D. Tsvetkov, J. Magn. Reson. 58, 95 (1984)

    Google Scholar 

  22. S.A. Dzuba, Yu.D. Tsvetkov, Chem. Phys. 120, 291 (1988)

    Article  Google Scholar 

  23. A.A. Dubinskii, G.G. Maresh, H.W. Spiess, J. Chem. Phys. 100, 2473 (1994)

    Article  Google Scholar 

  24. J.W. Saalmueller, H.W. Long, G.G. Maresh, H.W. Spiess, J. Magn. Reson. A 117, 193 (1995)

    Article  Google Scholar 

  25. S.A. Dzuba, Yu.D. Tsvetkov, J. Struct. Chem. 28, 343 (1987)

    Article  Google Scholar 

  26. S. Saxena, J.H. Freed, J. Phys. Chem. 101, 7998 (1997)

    Article  Google Scholar 

  27. L.V. Kulik, L.L. Rapatsky, A.V. Pivtsov, N.V. Surovtsev, S.V. Adichtchev, I.A. Grigor’ev, S.A. Dzuba, J. Chem. Phys. 131, 064505 (2009)

    Article  ADS  Google Scholar 

  28. O.G. Poluektov, L.M. Utschig, S. Dalosto, M.C. Thurnauer, J. Phys. Chem. B 107, 6239 (2003)

    Article  Google Scholar 

  29. V. Bercu, M. Martinelli, C.A. Massa, L.A. Pardi, D. Leporini, J. Chem. Phys. 123, 174906 (2005)

    Article  ADS  Google Scholar 

  30. A. Savitsky, M. Plato, K. Möbius, Appl. Magn. Reson. 37, 415 (2010)

    Article  Google Scholar 

  31. A. Savitsky, A.A. Dubinskii, M. Plato, Y.A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112, 9079 (2008)

    Article  Google Scholar 

  32. M. Fedin, I. Gromov, A. Schweiger, J. Magn. Reson. 171, 80 (2004)

    Article  ADS  Google Scholar 

  33. M. Florent, I. Kaminker, V. Nagarajan, D. Goldfarb, J. Magn. Reson. 210, 192 (2011)

    Article  ADS  Google Scholar 

  34. R.B. Zaripov, V.I. Dzhabarov, A.A. Knyazev, Yu.G. Galyametdinov, L.V. Kulik, Appl. Magn. Reson. 40, 11 (2011)

    Article  Google Scholar 

  35. S.P. Van, G.B. Birrell, O.H. Griffith, J. Magn. Reson. 15, 444 (1974)

    Google Scholar 

  36. F. Parak, E.N. Frolov, R.L. Mössbauer, V.I. Goldanskii, J. Mol. Biol. 145, 825 (1981)

    Article  Google Scholar 

  37. G. Galiskan, R.M. Briber, D. Thirumalai, V. Garein-Sakai, S.A. Woodson, A.P. Sokolov, J. Am. Chem. Soc. 128, 32 (2006)

    Article  Google Scholar 

  38. A. Tölle, H. Zimmermann, F. Fujara, W. Petry, W. Schmidt, H. Schober, J. Wuttke, Eur. Phys. J. B 16, 73 (2000)

    Google Scholar 

  39. L. Cordone, G. Cottone, S. Giuffrida, G. Palazzo, G. Venturoli, C. Viappiani, Biochim. Biophys. Acta 1749, 252 (2005)

    Google Scholar 

  40. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

  41. G.W. Gray, S.M. Kelly, J. Mater. Chem. 9, 2037 (1999)

    Article  Google Scholar 

  42. E.G. Rozantsev, Free Nitroxyl Radicals (Plenum Press, New York, 1970)

    Google Scholar 

  43. B. Epel, D. Arieli, D. Baute, D. Goldfarb, J. Magn. Reson. 164, 78 (2003)

    Article  ADS  Google Scholar 

  44. M. Bortolus, A. Ferrarini, J. van Tol, A.L. Maniero, J. Phys. Chem. B 110, 3220 (2006)

    Article  Google Scholar 

  45. L.V. Kulik, B. Epel, J. Messinger, W. Lubitz, Photosynth. Res. 84, 347 (2005)

    Article  Google Scholar 

  46. A.T. Bullock, C.B. Howard, J. Chem. Soc. Faraday Trans. 1 76, 1296 (1980)

    Article  Google Scholar 

  47. M.F. Ottaviani, G. Martini, L. Nuti, Magn. Reson. Chem. 25, 897 (1987)

    Article  Google Scholar 

  48. M. Plato, H.J. Steinhoff, C. Wegener, J.T. Törring, A. Savitsky, K. Möbius, Mol. Phys. 100, 3711 (2002)

    Article  ADS  Google Scholar 

  49. I. Komaromi, J.M.J. Tronchet, J. Phys. Chem. 99, 10213 (1995)

    Article  Google Scholar 

  50. M. Pavone, P. Cimino, O. Crescenzi, A. Sillanpaa, V. Barone, J. Phys. Chem. B 111, 8928 (2007)

    Article  Google Scholar 

  51. J. Jäckle, Amorphous Solids, Low-Temperature Properties (Springer, New York, 1981)

    Google Scholar 

  52. R. Shuker, R.W. Gammon, Phys. Rev. Lett. 25, 222 (1970)

    Article  ADS  Google Scholar 

  53. N.V. Surovtsev, A.P. Sokolov, Phys. Rev. B 66, 054205 (2002)

    Article  ADS  Google Scholar 

  54. U. Buchenau, N. Nücker, A.J. Dianoux, Phys. Rev. Lett. 53, 2316 (1984)

    Article  ADS  Google Scholar 

  55. M.A. Ramos, S. Vieira, F.J. Bermejo, J. Dawidowski, H.E. Fischer, H. Schober, M.A. Gonzalez, C.K. Loong, D.L. Price, Phys. Rev. Lett. 78, 82 (1997)

    Article  ADS  Google Scholar 

  56. N.V. Surovtsev, S.V. Adichtchev, E. Rossler, M.A. Ramos, J. Phys. Condens. Matter 16, 23 (2004)

    Google Scholar 

  57. W. Schirmacher, G. Diezemann, C. Ganter, Phys. Rev. Lett. 81, 136 (1998)

    Article  ADS  Google Scholar 

  58. N.V. Surovtsev, Phys. Status Solidi C 1, 2867 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Siberian Branch of the Russian Academy of Sciences (project nr. 75).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivtsov, A.V., Kulik, L.V., Surovtsev, N.V. et al. Temperature Dependence of Hyperfine Interaction for 15N Nitroxide in a Glassy Matrix at 10–210 K. Appl Magn Reson 41, 411–429 (2011). https://doi.org/10.1007/s00723-011-0272-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0272-y

Keywords

Navigation