Skip to main content
Log in

Two-sided competition, platform services and online shopping market structure

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

On an online shopping platform, for users on one side (buyers or sellers), the affiliation decisions depend not only on their stand-alone valuations for the platform’s services, but also on the platform’s user base on the other side. This paper investigates online shopping market structure based on platform services on the two sides and cross-group network effects. We find that the entry of inactive platforms hinges on the side where the strength gap between active platforms and inactive platforms is smaller, i.e. the side on which the average stand-alone valuation of users for platform services is relatively high. Specifically, given the sum of the average stand-alone valuations on the two sides, the market structure is more competitive when the proportion of the average stand-alone valuation on one side to the other is too high or too low. Furthermore, the market structure is more monopolistic when cross-group network effects are strong. We also find that social welfare and the total surplus of users on the two sides may both be lower when the market structure is more competitive. In a case where users on one side multi-home, we find that inactive platforms should pay attention to the average stand-alone valuation on the multi-homing side to enter the markets, whereas active platforms should pay attention to the average stand-alone valuation on the single-homing side to prevent the entry of inactive platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The data comes from Wangjingshe (www.100ec.cn) which focuses on data analysis in the e-commerce markets of China.

  2. We study online shopping market structure based on two-sidedness and platform services. Hence, our results can extend to two-sided markets in a general perspective. However, different types of two-sided markets have different features. For example, several good games are essential for a video game platform to stand out from competition and the structure of a network affects a platform’s scale (Zhu and Iansiti, 2019). The incentive of studying platform services is according to early experience of online shopping platforms in China, such as Taobao.com’s commitment on transaction security and JD.com’s efficient logistics services.

  3. The buyer’s stand-alone valuation here excludes the opportunity costs (shopping offline). Hence, the stand-alone valuations of some buyers who like shopping offline may be negative.

  4. We choose concave utility functions for two reasons. Firstly, in online shopping markets, buyers usually browse the first few webpages and compare the products on it because of searching costs. For sellers, it is due to the principle of diminishing marginal returns. Secondly, we cannot ignore the start-up problem (Evans and Schmalensee, 2010) in two-sided markets when studying the market structure. To describe the difficulty of start-up and the importance of initial numbers of buyers and sellers, the utility functions are then assumed to be concave.

  5. Since there is no difference between active platforms, users can choose any active platform to join.

  6. In this paper, the first or second derivatives are represented through subscript.

  7. In the stable symmetric equilibrium, note that if \(\overline{B} = \overline{S} = 0\), \(n^{bk*}\) and \(n^{sk*}\) should be positive. The reason is that if \(n^{bk*} = n^{sk*} = 0\) is the equilibrium, we obtain \(u^{\prime}(0)v^{\prime}(0) < \sigma^{b} \sigma^{s}\) from Eq. (9). The boundaries of the existence conditions, \(\overline{B} - \sigma^{b} Z^{b*} (\Lambda ) = 0\) and \(\overline{S} - \sigma^{s} Z^{s*} (\Lambda ) = 0\), in Sect. 4.3 then do not have a point of intersection in the first quadrant by Eqs. (1011), which implies that the existence area does not exist.

  8. Participation on the two sides may also be substitutes when the heterogeneity or demand system is changed (See more details in Weyl (2010)).

  9. For example, assuming that \(u(n^{ib} ) = \lambda^{b} (n^{ib} )^{{\gamma^{b} }}\) and \(v(n^{is} ) = \lambda^{s} (n^{is} )^{{\gamma^{s} }}\), the numerical analysis shows that when \(k = 2\), \(\sigma^{s} = 3\), \(B = 0\), \(S = - 1\), \(\lambda^{b} = \lambda^{s} = 1\) and \(\gamma^{b} = \gamma^{s} = 0.1\), the platform’s profits first decrease and then increase with the increasing of \(\sigma^{b}\).

  10. For the change of \(CS^{b}\) and \(CS^{s}\) with respect to \(k\), three cases may exist (see more details in the proof of Proposition 1).

  11. Tan and Zhou (2021) who study the effects of competition in two-sided markets also find that the total surplus of all users may decrease with \(k\). Hence, conventional regulation policy in one-sided markets may not be suitable for two-sided markets (see more discussion in Wright, 2004; Genakos and Valletti, 2012; Nedelescu, 2022).

  12. In our model, all platforms enter the markets at the same time and simultaneously choose the numbers of users. The market entry here represents the reentry of inactive platforms when the environment of the markets, i.e. exogenous parameters, changes.

  13. Note that if we want to rule out the influence of Effect 2, it is not enough to keep \(B/S\) unchanged. We should consider the uncertainty for evaluating platform services as well, i.e. keeping \(\overline{B}/\overline{S} = (B + \sigma^{b} /2)/(S + \sigma^{s} /2)\) unchanged.

  14. Similar to the discussion in Appendix 1, the stability condition in the case of competitive bottlenecks is unchanged.

  15. Note that in the case of competitive bottleneck, multiple symmetric equilibria exist and they satisfy \(\pi_{{n^{ib} }}^{i} = 0\) and \(\sigma^{s} n^{sk*} \ge \overline{S} + u(n^{bk*} ) - \sigma^{s} n^{sk*} \ge 0\) according to Eqs. (12). In what follows, we focus on the equilibrium in Eqs. (14) since the platforms have no motive for further increasing the numbers of users.

  16. For example, assuming that \(u(n^{ib} ) = \lambda^{b} (1 - (1 - n^{ib} )^{{\gamma^{b} }} )\) and \(v(n^{is} ) = \lambda^{s} (1 - (1 - n^{is} )^{{\gamma^{s} }} )\), the numerical analysis shows that when \(\sigma^{b} = \sigma^{s} = 1\), \(B = S = - 0.5\), \(\gamma^{b} = \gamma^{s} = 30\) and \(\lambda^{b} = \lambda^{s} = 1\), \(CS^{s}\) and \(CS\) first increase and then decrease with the increasing of \(k\).

  17. The symmetric equilibria are unstable for \(k > \overline{k}\).

References

  • Armstrong M (2006) Competition in two-sided markets. Rand J Econ 37(3):668–691

    Article  Google Scholar 

  • Bajo-Buenestado R, Kinateder M (2019) Armstrong meets Rochet–Tirole: on the equivalence of different pricing structures in two-sided markets. Econ Lett 177:43–46

    Article  Google Scholar 

  • Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5):215–227

    Article  Google Scholar 

  • Battaggion MR, Drufuca SM (2020) Quality competition and entry: a media market case. J Econ 130(1):1–36

    Article  Google Scholar 

  • Belleflamme P, Peitz M (2019) Price disclosure by two-sided platforms. Int J Ind Organ 67:1–19

    Article  Google Scholar 

  • Caillaud B, Jullien B (2003) Chicken & egg: competition among intermediation service providers. Rand J Econ 34(2):309–328

    Article  Google Scholar 

  • Carroni E (2018) Behaviour-based price discrimination with cross-group externalities. J Econ 125(2):137–157

    Article  Google Scholar 

  • Evans DS, Schmalensee R (2010) Failure to launch: critical mass in platform businesses. Rev Netw Econ 9(4):1–26

    Article  Google Scholar 

  • Farrell J, Saloner G (1985) Standardization, compatibility and innovation. Rand J Econ 16(1):70–83

    Article  Google Scholar 

  • Feng N, Chen J, Feng H, Li M (2020) Optimal product selection and pricing strategies for platform vendors under two-sided network effects. Electron Commer Res Appl 43:100990

    Article  Google Scholar 

  • Gabszewicz JJ, Wauthy XY (2014) Vertical product differentiation and two-sided markets. Econ Lett 123(1):58–61

    Article  Google Scholar 

  • Genakos C, Valletti T (2012) Regulating prices in two-sided markets: the waterbed experience in mobile telephony. Telecommun Policy 36(5):360–368

    Article  Google Scholar 

  • Geng W, Chen Z (2019) Optimal pricing of virtual goods with conspicuous features in a freemium model. Int J Electron Commer 23(3):427–449

    Article  Google Scholar 

  • Hagiu A (2006) Pricing and commitment by two-sided platforms. Rand J Econ 37(3):720–737

    Article  Google Scholar 

  • Hagiu A, Hałaburda H (2014) Information and two-sided platform profits. Int J Ind Organ 34:25–35

    Article  Google Scholar 

  • Hałaburda H, Yehezkel Y (2019) Focality advantage in platform competition. J Econ Manag Strategy 28(1):49–59

    Article  Google Scholar 

  • Hałaburda H, Jullien B, Yehezkel Y (2020) Dynamic competition with network externalities: why history matters. Rand J Econ 51(1):3–31

    Article  Google Scholar 

  • Hu R, Liu M, He P, Ma Y (2019) Can investors on P2P lending platforms identify default risk? Int J Electron Commer 23(1):63–84

    Article  Google Scholar 

  • Jullien B, Pavan A (2019) Information management and pricing in platform markets. Rev Econ Stud 86(4):1666–1703

    Article  Google Scholar 

  • Katz ML, Shapiro C (1985) Network externalities, competition, and compatibility. Am Econ Rev 75(3):424–440

    Google Scholar 

  • Katz ML, Shapiro C (1986) Technology adoption in the presence of network externalities. J Polit Econ 94(4):822–841

    Article  Google Scholar 

  • Li J, Tang J, Jiang L, Yen DC, Liu X (2019) Economic success of physicians in the online consultation market: a signaling theory perspective. Int J Electron Commer 23(2):244–271

    Article  Google Scholar 

  • Nedelescu D (2022) The effects of conventional policies on price structure and consumer surplus in a two-sided market—an economics experiment. Working Paper, University of Oklahoma

  • Reisinger M (2014) Two-part tariff competition between two-sided platforms. Eur Econ Rev 68:168–180

    Article  Google Scholar 

  • Rochet J-C, Tirole J (2003) Platform competition in two-sided markets. J Eur Econ Assoc 1(4):990–1029

    Article  Google Scholar 

  • Rochet J-C, Tirole J (2006) Two-sided markets: a progress report. RAND J Econ 37(3):645–667. https://doi.org/10.1111/j.1756-2171.2006.tb00036.x

    Article  Google Scholar 

  • Roger G (2017) Two-sided competition with vertical differentiation. J Econ 120(3):193–217

    Article  Google Scholar 

  • Rohlfs J (1974) A theory of interdependent demand for a communications service. Bell J Econ Manag Sci 5(1):16–37

    Article  Google Scholar 

  • Tan G, Zhou J (2021) The effects of competition and entry in multi-sided markets. Rev Econ Stud 88(2):1002–1030

    Article  Google Scholar 

  • Weyl EG (2010) A price theory of multi-sided platforms. Am Econ Rev 100(4):1642–1672

    Article  Google Scholar 

  • Wright J (2004) One-sided logic in two-sided markets. Rev Netw Econ 3(1):42–63

    Article  Google Scholar 

  • Zhu F, Iansiti M (2019) Why some platforms thrive and others don’t. Harv Bus Rev 97(1):118–125

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (72071040, 71671036) and Ministry of Education in China Project of Humanities and Social Sciences (20YJC630142). We are in particular indebted to two anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

We build a dynamic model following Evans and Schmalensee (2010) to analyze the stability condition as follows:

$$\begin{array}{*{20}l} {\dot{x}^{i} (t) = \frac{{dx^{i} (t)}}{dt} = h^{x} (d^{ib} (t) - x^{i} (t))} \hfill \\ {\dot{y}^{i} (t) = \frac{{dy^{i} (t)}}{dt} = h^{y} (d^{is} (t) - y^{i} (t))} \hfill \\ \end{array} ,$$

where \(x^{i} (t)\) and \(y^{i} (t)\), respectively, denote the numbers of buyers and sellers on platform \(i\) at time \(t\), and \(h^{x}\) and \(h^{y}\) are increasing functions with \(h^{x} (0) = 0\) and \(h^{y} (0) = 0\). In addition, given \(x^{i} (t)\) and \(y^{i} (t)\), from Eqs. (36), the demand of buyers denoted by \(d^{ib} (t)\) and the demand of sellers denoted by \(d^{is} (t)\) on platform \(i\) at time \(t\) satisfy

$$d^{ib} (t) = (\overline{B} + v(y^{i} (t)) - p^{ib*} )/\sigma^{b} - Z^{b* - }$$

and

$$d^{is} (t) = (\overline{S} + u(x^{i} (t)) - p^{is*} )/\sigma^{s} - Z^{s* - } ,$$

respectively.

The linear approximation of the dynamic model then is

$$\frac{d}{dt}\left[ {\begin{array}{ll} {x^{i} } \\ {y^{i} } \\ \end{array} } \right] = \left[ {\begin{array}{ll} a & b \\ c & d \\ \end{array} } \right]\left[ {\begin{array}{ll} {x^{i} } \\ {y^{i} } \\ \end{array} } \right],$$

where \(a = - \left. {(h^{x} )^{\prime}} \right|_{{(x^{i} ,y^{i} ) = (n^{ib*} ,n^{is*} )}}\), \(b = (h^{x} )^{\prime}d_{{y^{i} }}^{ib} |_{{(x^{i} ,y^{i} ) = (n^{ib*} ,n^{is*} )}}\), \(c = (h^{y} )^{\prime}d_{{x^{i} }}^{is} |_{{(x^{i} ,y^{i} ) = (n^{ib*} ,n^{is*} )}}\) and \(d = - (h^{y} )^{\prime}|_{{(x^{i} ,y^{i} ) = (n^{ib*} ,n^{is*} )}}\).

According to the stability theory of differential equations, the stable symmetric equilibrium should satisfy

$$p \triangleq - (a + d) = (h^{x} )^{\prime} + (h^{y} )^{\prime} > 0$$

and

$$q \triangleq ad - bc = (h^{x} )^{\prime}(h^{y} )^{\prime}(1 - \frac{{v^{\prime}(n^{is*} )u^{\prime}(n^{ib*} )}}{{\sigma^{b} \sigma^{s} }}) > 0.$$

Since \(h^{x}\) and \(h^{y}\) are increasing functions, we have \(p > 0\). The stability condition then only requires \(u^{\prime}(n^{ib*} )v^{\prime}(n^{is*} ) < \sigma^{b} \sigma^{s}\).

Appendix 2

Proof of Lemma 1

From \(\pi_{{n^{ib} }}^{i} = \pi_{{n^{is} }}^{i} = 0\) and the rationality condition, we have

$$\begin{array}{*{20}l} {\pi_{{n^{ib} }}^{i} = \overline{B} + v(n^{is*} ) - \sigma^{b} Z^{b*} - \sigma^{b} n^{ib*} = 0} \hfill \\ {\pi_{{n^{is} }}^{i} = \overline{S} + u(n^{ib*} ) - \sigma^{s} Z^{s*} - \sigma^{s} n^{is*} = 0} \hfill \\ \end{array} .$$

Taking the sum of the above equations over \(i \in \Omega\), we obtain

$$\sum\limits_{i \in \Omega } {\pi_{{n^{ib} }}^{i} } = k\overline{B} + \sum\limits_{i \in \Omega } {v(n^{{is{*}}} )} - k\sigma^{b} Z^{b*} - \sigma^{b} Z^{b*} = k\overline{B} + \sum\limits_{i \in \Omega } {v(n^{{is{*}}} } ) - \sigma^{b} (k + 1)\left(\frac{{\overline{B} + v(n^{{is{*}}} ) - p^{ib*} }}{{\sigma^{b} }}\right) = 0$$

and

$$\sum\limits_{i \in \Omega } {\pi_{{n^{is} }}^{i} = } k\overline{S} + \sum\limits_{i \in \Omega } {u(n^{{ib{*}}} )} - k\sigma^{s} Z^{s*} - \sigma^{s} Z^{s*} = k\overline{S} + \sum\limits_{i \in \Omega } {u(n^{{ib{*}}} )} - \sigma^{s} (k + 1)\left(\frac{{\overline{S} + u(n^{{ib{*}}} ) - p^{is*} }}{{\sigma^{s} }}\right) = 0.$$

Simplifying the two equations above, we have Lemma 1. \(\square\)

Proof of Lemma 2

From Eqs. (56) and (1011), in the symmetric equilibria, we can obtain \(p^{bk*} = \sigma^{b} n^{bk*}\) and \(p^{sk*} = \sigma^{s} n^{sk*}\). Hence, \(\pi^{k*} = \sigma^{b} (n^{bk*} )^{2} + \sigma^{s} (n^{sk*} )^{2}\) and we only need to verify the signs of \(n_{\zeta }^{bk*}\) and \(n_{\zeta }^{sk*}\), where \(\zeta = B\), \(S\) or \(k\).

  1. (1)

    \(\zeta = B\) or \(S\)

According to the concavity of \(u( \cdot )\) and \(v( \cdot )\), in the symmetric equilibrium, we obtain that the partial derivative of \(n^{bk*}\) to \(n^{sk*}\) in Eq. (10) is lower than that in Eq. (11) as follows:

$$\frac{{v^{\prime}(n^{sk*} )}}{{\sigma^{b} (k + 1)}} < \frac{{\sigma^{s} (k + 1)}}{{u^{\prime}(n^{bk*} )}}.$$
(15)

Taking the first derivative of Eqs. (1011) with respect to \(B\) and \(S\), we obtain

$$\begin{array}{*{20}l} {n_{B}^{bk*} = \frac{{(k + 1)\sigma^{s} }}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}} > 0} \hfill \\ {n_{S}^{bk*} = \frac{{v^{\prime}(n^{sk*} )}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}} > 0} \hfill \\ \end{array} ,$$
(16)

since \(\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} ) > 0\) according to Eq. (15). Similarly, due to the symmetry of two sides, we can prove that \(n_{B}^{sk*} > 0\) and \(n_{S}^{sk*} > 0\).

  1. (2)

    \(\zeta = k\)

Taking the first derivative of Eqs. (1011) with respect to \(k\), we obtain

$$\left[ {\begin{array}{ll} { - \sigma^{b} (k + 1)} & {v^{\prime}(n^{sk*} )} \\ {u^{\prime}(n^{bk*} )} & { - \sigma^{s} (k + 1)} \\ \end{array} } \right]\left[ {\begin{array}{ll} {n_{k}^{bk*} } \\ {n_{k}^{sk*} } \\ \end{array} } \right] = \left[ {\begin{array}{ll} {\sigma^{b} n^{bk*} } \\ {\sigma^{s} n^{sk*} } \\ \end{array} } \right].$$
(17)

Simplifying the equations above, we obtain

$$n_{k}^{bk*} = \frac{{ - \sigma^{b} \sigma^{s} (k + 1)n^{bk*} - \sigma^{s} n^{sk*} v^{\prime}(n^{sk*} )}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}} < 0$$

and

$$n_{k}^{sk*} = \frac{{ - \sigma^{s} \sigma^{b} (k + 1)n^{sk*} - \sigma^{b} n^{bk*} u^{\prime}(n^{bk*} )}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}} < 0.$$

\(\square\)

Proof of Lemma 3

Taking the first derivative of Eqs. (1011) with respect to \(\sigma^{b}\), we obtain

$$\left[ {\begin{array}{ll} {\sigma^{b} (k + 1)} & { - v^{\prime}(n^{sk*} )} \\ {u^{\prime}(n^{bk*} )} & { - \sigma^{s} (k + 1)} \\ \end{array} } \right]\left[ {\begin{array}{ll} {n_{{\sigma^{b} }}^{bk*} } \\ {n_{{\sigma^{b} }}^{sk*} } \\ \end{array} } \right] = \left[ {\begin{array}{ll} {0.5 - (k + 1)n^{bk*} } \\ 0 \\ \end{array} } \right]$$

Then we obtain

$$n_{{\sigma^{b} }}^{bk*} = \frac{{\sigma^{s} [0.5 - (k + 1)n^{bk*} ](k + 1)}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}}$$

and

$$n_{{\sigma^{b} }}^{sk*} = \frac{{[0.5 - (k + 1)n^{bk*} ]u^{\prime}(n^{bk*} )}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}}.$$

Since \(\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} ) > 0\) according to Eq. (15), we obtain that \({\text{sgn}} (n_{{\sigma^{b} }}^{bk*} ) = {\text{sgn}} (n_{{\sigma^{b} }}^{sk*} ) = {\text{sgn}} (0.5 - Z^{b*} - n^{bk*} )\), and \(n^{bk*}\) and \(n^{sk*}\) are monotonic functions on \(\sigma^{b}\).

Next, since \(p^{sk*} = \sigma^{s} n^{sk*}\), we have \({\text{sgn}} (p_{{\sigma^{b} }}^{sk*} ) = {\text{sgn}} (n_{{\sigma^{b} }}^{sk*} )\). For \(p^{bk*} = \sigma^{b} n^{bk*}\), if \(Z^{b*} + n^{bk*} < 0.5\), we have \(p_{{\sigma^{b} }}^{bk*} > 0\) and if \(Z^{b*} + n^{bk*} \ge 0.5\), by Eq. (9), we obtain

$$\begin{aligned} p_{{\sigma^{b} }}^{bk*} & = n^{bk*} + \frac{{\sigma^{b} \sigma^{s} [0.5 - (k + 1)n^{bk*} ](k + 1)}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}} \\ & > n^{bk*} + \frac{{\sigma^{b} \sigma^{s} [0.5 - (k + 1)n^{bk*} ](k + 1)}}{{\sigma^{b} \sigma^{s} (k^{2} + 2k)}}. \\ \end{aligned}$$

Simplify the equation above, we have \(p_{{\sigma^{b} }}^{bk*} > \frac{{0.5(k + 1) - n^{bk*} }}{{k^{2} + 2k}} > 0\), and then we can prove that \(p_{{\sigma^{b} }}^{bk*}\) is always positive.

Finally, for \(\pi^{k*} = \sigma^{b} (n^{bk*} )^{2} + \sigma^{s} (n^{sk*} )^{2}\), when \(Z^{b*} + n^{bk*} \le 0.5\), we obtain \(\pi_{{\sigma^{b} }}^{k*} > 0\) as \(n_{{\sigma^{b} }}^{bk*} \ge 0\) and \(n_{{\sigma^{b} }}^{sk*} \ge 0\). However, when \(Z^{l*} + n^{lk*} > 0.5\), \(\pi^{k*}\) may decrease with \(\sigma^{b}\) as \(n_{{\sigma^{b} }}^{bk*} < 0\) and \(n_{{\sigma^{b} }}^{sk*} < 0\) (see Footnote 9).

Similarly, due to the symmetry of two sides, we can prove others. \(\square\)

Proof of Proposition 1

From Eqs. (1011), since \(Z^{b*} { = }kn^{bk*}\) and \(Z^{s*} { = }kn^{sk*}\), we have

$$\begin{array}{*{20}l} {\sigma^{b} (k + 1)\frac{{Z^{b*} }}{k} = \overline{B} + v\left( {\frac{{Z^{s*} }}{k}} \right)} \hfill \\ {\sigma^{s} (k + 1)\frac{{Z^{s*} }}{k} = \overline{S} + u\left( {\frac{{Z^{b*} }}{k}} \right)} \hfill \\ \end{array} .$$

Taking the first derivative of the above equations with respect to \(k\), we have

$$\begin{array}{*{20}l} {\frac{{\sigma^{b} (k + 1)}}{k}Z_{k}^{b*} - \frac{{\sigma^{b} }}{{k^{2} }}Z^{b*} = v^{\prime}\left( {\frac{{Z^{s*} }}{k}} \right)\frac{{kZ_{k}^{s*} - Z^{s*} }}{{k^{2} }}} \hfill \\ {\frac{{\sigma^{s} (k + 1)}}{k}Z_{k}^{s*} - \frac{{\sigma^{s} }}{{k^{2} }}Z^{s*} = u^{\prime}\left( {\frac{{Z^{b*} }}{k}} \right)\frac{{kZ_{k}^{b*} - Z^{b*} }}{{k^{2} }}} \hfill \\ \end{array} .$$

Solving the equations above, we obtain

$$Z_{k}^{b*} = \frac{{k(\sigma^{s} \sigma^{b} n^{bk*} - \sigma^{s} n^{sk*} v^{\prime}(n^{sk*} )) + n^{bk*} \Delta }}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}}$$

and

$$Z_{k}^{s*} = \frac{{k\sigma^{b} (\sigma^{s} n^{sk*} - n^{bk*} u^{\prime}(n^{bk*} )) + n^{sk*} \Delta }}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}},$$

where \(\Delta = \sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} ) > 0\) by Eq. (9).

Since \({\text{sgn}} (Z_{k}^{l*} ) = {\text{sgn}} (CS_{k}^{l*} )\), we only need to verify the signs of \(Z_{k}^{l*}\), \(l = b,s\). Note that the sign of \(Z_{k}^{l*}\), \(l = b,s\) is uncertain (see Fig. 1a). However, if \(Z_{k}^{b*} < 0\), we can obtain \(Z_{k}^{s*} > 0\) since \(\sigma^{s} n^{sk*} v^{\prime}(n^{sk*} ) > \sigma^{s} \sigma^{b} n^{bk*} > u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} )n^{bk*}\) (by \(\Delta > 0\)). We then obtain the first results. The second results can be proved by Fig. 1b directly.

Next, we discuss the change of \(CS^{b}\) and \(CS^{s}\) with respect to \(k\). Firstly, note that if \(Z_{k}^{b*} < 0\), the numerator of \(Z_{k}^{b*}\), i.e. \(\sigma^{s} \sigma^{b} Z^{b*} - \sigma^{s} Z^{s*} v^{\prime}(n^{sk*} ) + n^{bk*} \Delta\), decreases with \(k\) as \(Z_{k}^{s*} > 0\), \(n_{k}^{bk*} < 0\) and \(n_{k}^{sk*} < 0\). Hence, when \(\left. {Z_{k}^{b*} } \right|_{{k = \tilde{k}}} < 0\) for some \(\tilde{k} \le \overline{k}\), we have \(Z_{k}^{b*} < 0\) and \(Z_{k}^{s*} > 0\) for \(k \in [\tilde{k},\overline{k}]\), where \(\Delta = 0\) if \(k = \overline{k}\).Footnote 17 Secondly, we can prove that \({\text{sgn}} (\left. {Z_{k}^{b*} } \right|_{{k = \overline{k}}} ) = {\text{sgn}} ( - \left. {Z_{k}^{s*} } \right|_{{k = \overline{k}}} )\) since

$$\left. {Z_{k}^{b*} } \right|_{{k = \overline{k}}} = \frac{{k\sigma^{s} (\sigma^{b} n^{bk*} - n^{sk*} v^{\prime}(n^{sk*} ))}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}}$$

and

$$\left. {Z_{k}^{s*} } \right|_{{k = \overline{k}}} = \frac{{ku^{\prime}(n^{bk*} )((v^{\prime}(n^{sk*} )n^{sk*} - \sigma^{b} n^{bk*} )}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}}.$$

Therefore, for the change of \(CS^{b}\) and \(CS^{s}\) with respect to \(k\), three cases might exist. Case 1: The surplus of users on one side first increases with \(k\) and then decreases with \(k\), and the surplus of users on the other side increases with \(k\). One example of Case 1 is shown in Fig. 1. Case 2: The surplus of users on one side decreases with \(k\), and the surplus of users on the other side increases with \(k\). One example of Case 2 is that \(\sigma^{b} = \sigma^{s} = 4\), \(B = S = - 2\), \(\gamma^{b} = 0.9\), \(\gamma^{s} = 0.1\) and \(\lambda^{b} = \lambda^{s} = 1\). Case 3: The surplus of users on either side increases with \(k\). One example of Case 3 is shown in Fig. 2. In this example, we also have \(\left. {Z_{k}^{b*} } \right|_{{k = \overline{k}}} = \left. {Z_{k}^{s*} } \right|_{{k = \overline{k}}} = 0\). \(\square\)

Proof of Corollary 1

According to the proof of Proposition 1, when \(B = S\), \(\sigma^{b} = \sigma^{s}\) and \(u( \cdot ) = v( \cdot )\), we obtain

$$Z_{k}^{b*} = \frac{{\sigma^{b} kn^{bk*} (\sigma^{b} - u^{\prime}(n^{bk*} )) + n^{bk*} \Delta }}{{(\sigma^{b} )^{2} (k + 1)^{2} - (u^{\prime}(n^{bk*} ))^{2} }}.$$

Since \(\Delta = \sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} ) > 0\), we have \(\sigma^{b} - u^{\prime}(n^{bk*} ) > 0\) and then \(Z_{k}^{b*} > 0\). The result for social welfare can be proved by Fig. 2b directly. \(\square\)

Proof of Proposition 2

For \((S,B)\) on curve \(\overline{B} = \sigma^{b} Z^{b*}\), from Eqs. (1011), we obtain

$$\begin{array}{*{20}l} {\sigma^{b} (k + 1)\frac{{\overline{B}}}{{k\sigma^{b} }} = \overline{B} + v(n^{sk*} )} \hfill \\ {\sigma^{s} (k + 1)n^{sk*} = \overline{S} + u\left( {\frac{{\overline{B}}}{{k\sigma^{b} }}} \right)} \hfill \\ \end{array} .$$

Simplifying the equations above, we have

$$\overline{S} = \sigma^{s} (k + 1)v^{ - 1} \left( {\frac{{\overline{B}}}{k}} \right) - u\left( {\frac{{\overline{B}}}{{\sigma^{b} k}}} \right).$$

Since \(Z_{S}^{b*} > 0\), we obtain that \(\overline{B} - \sigma^{b} Z^{b*} \le 0\) is equivalent to

$$\overline{S} \ge \sigma^{s} (k + 1)v^{ - 1} \left( {\frac{{\overline{B}}}{k}} \right) - u\left( {\frac{{\overline{B}}}{{\sigma^{b} k}}} \right).$$

Similarly, due to the symmetry of two sides, we can prove that \(\overline{S} - \sigma^{s} Z^{s*} \le 0\) is equivalent to \(\overline{B} \ge \sigma^{b} (k + 1)u^{ - 1} (\frac{{\overline{S}}}{k}) - v(\frac{{\overline{S}}}{{\sigma^{s} k}})\). \(\square\)

Proof of Proposition 3

According to the proof of Proposition 1, we have

$$Z_{k}^{b*} = \frac{{k\sigma^{s} (\sigma^{b} n^{bk*} - n^{sk*} v^{\prime}(n^{sk*} )) + n^{bk*} \Delta }}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - v^{\prime}(n^{sk*} )u^{\prime}(n^{bk*} )}},$$

where \(\Delta = \sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} ) > 0\).

For the points on curve \(B = f(S,k)\), we can obtain \(\sigma^{b} n^{bk*} = v(n^{sk*} )\) by Eq. (10) as \(\overline{B} = \sigma^{b} Z^{b*} = k\sigma^{b} n^{bk*}\). Then we have

$$\sigma^{b} n^{bk*} - n^{sk*} v^{\prime}(n^{sk*} ) = v(n^{sk*} ) - n^{sk*} v^{\prime}(n^{sk*} ) > v(0) = 0$$

since \(v( \cdot )\) is a concave function.

With the analysis above, we finally obtain

$$Z_{k}^{b*} > \frac{{k\sigma^{s} (\sigma^{b} n^{bk*} - n^{sk*} v^{\prime}(n^{sk*} ))}}{{\sigma^{b} \sigma^{s} (k + 1)^{2} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} )}} > 0.$$

Hence, curve \(B = f(S,k + 1)\) is on the left of curve \(B = f(S,k)\). Similarly, we can prove that curve \(S = g(B,k + 1)\) is below curve \(S = g(B,k)\) (see Fig. 4). \(\square\)

Proof of Proposition 6

From Eq. (14), since \(Z^{b*} { = }kn^{bk*}\) and \(Z^{s*} { = }n^{sk*}\), we have

$$\begin{array}{*{20}l} {\sigma^{b} (k + 1)\frac{{Z^{b*} }}{k} = \overline{B} + v(Z^{s*} )} \hfill \\ {2\sigma^{s} Z^{s*} = \overline{S} + u\left( {\frac{{Z^{b*} }}{k}} \right)} \hfill \\ \end{array} .$$

Taking the first derivative of the above equations with respect to \(k\), we have

$$\begin{array}{*{20}l} {\frac{{\sigma^{b} (k + 1)}}{k}Z_{k}^{b*} - \frac{{\sigma^{b} }}{{k^{2} }}Z^{b*} = v^{\prime}(Z^{s*} )Z_{k}^{s*} } \hfill \\ {2\sigma^{s} Z_{k}^{s*} = u^{\prime}\left( {\frac{{Z^{b*} }}{k}} \right)\frac{{kZ_{k}^{b*} - Z^{b*} }}{{k^{2} }}} \hfill \\ \end{array} .$$

Solving the equations above, we obtain

$$Z_{k}^{b*} = \frac{{n^{bk*} (2\sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} ))}}{{2(k + 1)\sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} )}} > 0$$

and

$$Z_{k}^{s*} = \frac{{ - \sigma^{b} n^{bk*} u^{\prime}(n^{bk*} )}}{{2(k + 1)\sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} )}} < 0,$$

since \(\Delta = \sigma^{b} \sigma^{s} - u^{\prime}(n^{bk*} )v^{\prime}(n^{sk*} ) > 0\).

We then can prove that \(CS_{k}^{b} > 0\) since \(CS^{b} = \frac{1}{2}\sigma^{b} (Z^{b*} )^{2}\). However, the sign of \(CS_{k}^{s} = \frac{1}{2}\sigma^{s} Z^{s*} (Z^{s*} + 2kZ_{k}^{s*} )\) is uncertain although the surplus of sellers from one active platform, i.e. \(\frac{1}{2}\sigma^{s} (Z^{s*} )^{2}\), decreases with \(k\) (see Fig. 6a). In addition, the results for the total surplus and social welfare can be proved by Fig. 6b directly. \(\square\)

Proof of Proposition 7

For \((S,B)\) on curve \(\overline{B} = \sigma^{b} Z^{b*}\), from Eq. (14), we obtain

$$\begin{array}{*{20}l} {(k + 1)\sigma^{b} \frac{{\overline{B}}}{{k\sigma^{b} }} = \overline{B} + v(n^{sk*} )} \hfill \\ {2\sigma^{s} n^{sk*} = \overline{S} + u\left( {\frac{{\overline{B}}}{{k\sigma^{b} }}} \right)} \hfill \\ \end{array} .$$

Simplifying the equations above, we have

$$\overline{S} = 2\sigma^{s} v^{ - 1} \left( {\frac{{\overline{B}}}{k}} \right) - u\left( {\frac{{\overline{B}}}{{\sigma^{b} k}}} \right).$$

Since \(Z_{S}^{b*} > 0\), we obtain that \(\overline{B} - \sigma^{b} Z^{b*} \le 0\) is equivalent to

$$\overline{S} \ge 2\sigma^{s} v^{ - 1} \left( {\frac{{\overline{B}}}{k}} \right) - u\left( {\frac{{\overline{B}}}{{\sigma^{b} k}}} \right).$$

Similarly, due to the symmetry of two sides, we can prove that \(\overline{S} - \sigma^{s} Z^{s*} (\Lambda ) \le 0\) is equivalent to \(\overline{B} \ge \sigma^{b} (k + 1)u^{ - 1} (\overline{S}) - v\left( {\frac{{\overline{S}}}{{\sigma^{s} }}} \right)\). \(\square\)

Proof of Proposition 8

By comparing Proposition 2 with Proposition 7, we obtain

$$\sigma^{s} (k + 1)v^{ - 1} \left( {\frac{{\overline{B}}}{k}} \right) - u\left( {\frac{{\overline{B}}}{{\sigma^{b} k}}} \right) > 2\sigma^{s} v^{ - 1} \left( {\frac{{\overline{B}}}{k}} \right) - u\left( {\frac{{\overline{B}}}{{\sigma^{b} k}}} \right)$$

and

$$\sigma^{b} (k + 1)u^{ - 1} \left( {\frac{{\overline{S}}}{k}} \right) - v\left( {\frac{{\overline{S}}}{{\sigma^{s} k}}} \right) < \sigma^{b} (k + 1)u^{ - 1} (\overline{S}) - v\left( {\frac{{\overline{S}}}{{\sigma^{s} }}} \right)$$

for \(k > 1\), since \(B\) increases with \(S\) on curve \(S = g^{m} (B,k)\), i.e. \(\sigma^{b} (k + 1)u^{ - 1} (\overline{S}) - v\left( {\frac{{\overline{S}}}{{\sigma^{s} }}} \right)\) increases with \(S\).

Therefore, curve \(B = f^{m} (S,k)\) is on the left of curve \(B = f(S,k)\) and curve \(S = g^{m} (B,k)\) is above curve \(S = g(B,k)\). \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Zhang, Y. & Li, J. Two-sided competition, platform services and online shopping market structure. J Econ 138, 95–127 (2023). https://doi.org/10.1007/s00712-022-00803-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-022-00803-w

Keywords

JEL classifications

Navigation