Skip to main content
Log in

To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We have studied glass-bearing leucocratic (granitic to Qz-monzonitic) crustal xenoliths from the Tindfjöll Pleistocene volcanic complex, SW Iceland. The xenoliths consist of strongly resorbed relicts of anorthitic plagioclase, K-rich feldspar and rounded quartz in colorless through pale to dark-brown interstitial glass. Spongy clinopyroxene and/or rounded or elongated crystals of orthopyroxene are in subordinate amount. Magnetite, ilmenite, zircon, apatite, allanite and/or chevkinite are accessory minerals. The xenoliths more likely are relicts of earlier-formed, partially melted Si-rich rocks or quartz–feldspar-rich crystal segregations, which suffered latter interaction with hotter and more primitive magma(s). Icelandic lavas are typically low in δ 18O compared to mantle-derived, “MORB”-like rocks (~5.6 ± 0.2 ‰), likely due to their interaction with, or contamination by, the upper-crustal rocks affected by rain and glacial melt waters. Surprisingly, many quartz and feldspar crystals and associated colorless to light-colored interstitial glasses of the studied xenoliths are not low but high in δ 18O (5.1–7.2 ‰, excluding three dark-brown glasses of 4–5 ‰). The xenoliths contain abundant, low- to high-δ 18O (2.4–6.3 ‰) young zircons (U–Pb age 0.2–0.27 ± 0.03 Ma; U–Th age 0.16 ± 0.07 Ma), most of them in oxygen isotope equilibrium with interstitial glasses. The δ 18O values >5.6 ‰ recorded in the coexisting zircon, quartz, feldspar and colorless interstitial glass suggest crystallization from melts produced by fusion of crustal rocks altered by seawater, also reflecting multiple melting and crystallization events. This suggests that “normal”-δ 18O silicic magmas may not be ultimately produced by crystallization of mafic, basaltic magmas. Instead, our new single-crystal laser fluorination and ion microprobe O-isotope data suggest addition of diverse partial crustal melts, probably originated from variously altered and preconditioned crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alt JC, Muehlenbachs K, Honnorez J (1986) An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B. Earth Planet Sci Lett 80:217–229

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe–Mg–Mn–Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a PASCAL program to assess equilibria among Fe–Mg–Ti oxides, pyroxenes, olivine and quartz. Comput Geosci 19:1333–1350

    Article  Google Scholar 

  • Best MG (2003) Igneous and metamorphic petrology. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. In: Putirka KD, Tepley III FJ (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69, Mineral Soc Am. Washington DC, pp 445–478

  • Bindeman IN, Simakin AG (2014) Rhyolites—hard to produce, but easy to recycle and sequester: integrating microgeochemical observations and numerical models. Geosphere. doi:10.1130/GES00969.1

    Google Scholar 

  • Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2003) Rapid generation of both high- and low-δ 18O, large-volume silicic magmas at the Timber Mountain/Oasis Valley caldera complex, Nevada. Geol Soc Am Bull 115:581–595

    Article  Google Scholar 

  • Bindeman I, Schmitt A, Valey JW (2006) U–Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera complex, Nevada: rapid generation of large volume magmas by shallow-level remelting. Contrib Mineral Petrol 152:649–665

    Article  Google Scholar 

  • Bindeman IN, Gurenko AA, Sigmarsson O, Chaussidon M (2008a) Oxygen isotope heterogeneity and disequilibria of olivine phenocrysts in large volume basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420

    Article  Google Scholar 

  • Bindeman IN, Fu B, Noriko KT, Valley JW (2008b) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193

    Article  Google Scholar 

  • Bindeman I, Gurenko A, Carley T, Miller C, Martin E, Sigmarsson O (2012) Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24:227–232

    Article  Google Scholar 

  • Blake S (1984) Magma mixing and hybridization processes at the alkalic, silicic, Torfajökull central volcano triggered by tholeiitic Veidivötn fissuring, south Iceland. J Volcanol Geotherm Res 22:1–31

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Bourgeois O, Dauteuil O, Van Vliet-Lanoë B (1998) Pleistocene subglacial volcanism in Iceland: tectonic implications. Earth Planet Sci Lett 164:165–178

    Article  Google Scholar 

  • Bowen NL (1928) Origin of igneous rocks. Plinceton University Press, NewJersey

    Google Scholar 

  • Carley TL, Miller CL, Barth AP, Bindeman IN, Wooden JL (2011) Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineral Petrol 102:135–161

    Article  Google Scholar 

  • Carmichael ISE (1964) The petrology of Thingmuli, a Tertiary volcano in eastern Iceland. J Petrol 5:435–460

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43, Mineral Soc Am. Washington DC, pp 1–81

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Condomines M, Grönvold K, Hooker PJ, Muehlenbachs K, O’Nions RK, Óskarsson N, Oxburgh ER (1983) Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:125–136

    Article  Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Frost BR, Lindsley DH, Andersen DJ (1988) Fe–Ti oxide-silicate equilibria: assemblages with fayalitic olivine. Am Mineral 73:727–740

    Google Scholar 

  • Furman T, Frey FA, Meyer PS (1992) Petrogenesis of evolved basalts and rhyolites at Austurhorn, southeastern Iceland: the role of fractional crystallisation. J Petrol 33:1405–1445

    Article  Google Scholar 

  • Gautason B, Muehlenbachs K (1998) Oxygen isotopic fluxes associated with high-temperature processes in the rift zones of Iceland. Chem Geol 145:275–286

    Article  Google Scholar 

  • Gerasimovsky VI, Polyakov AI, Durasova HF et al (1978) Iceland and the mid-Atlantic ridge, Geokhemistry. Nauka, Moscow

    Google Scholar 

  • Getty SR, DePaolo DJ (1995) Quaternary geochronology using the U–Th–Pb method. Geochim Cosmochim Acta 59:3267–3272

    Article  Google Scholar 

  • Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43:2075–2095

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ 18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Article  Google Scholar 

  • Grimes C, Ushikubo T, John B, Valley J (2011) Uniformly mantle-like δ 18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33

    Article  Google Scholar 

  • Gunnarsson B, Marsh BD, Taylor HP (1998) Generation of Icelandic rhyolites: silicic lavas from the Torfajökull central volcano. J Volcanol Geotherm Res 83:1–45

    Article  Google Scholar 

  • Gurenko AA, Chaussidon M (2002) Oxygen isotope variations in primitive tholeiites of Iceland: evidence from a SIMS study of glass inclusions, olivine phenocrysts and pillow rim glasses. Earth Planet Sci Lett 205:63–79

    Article  Google Scholar 

  • Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li–B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Petrol 46:2495–2526

    Article  Google Scholar 

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638

    Article  Google Scholar 

  • Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. J Geophys Res 87:6559–6565

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53, Mineral Soc Am, Washington DC, pp 27-62

  • Jakobsson S (1966) The Grimsnes lavas, SW-Iceland. Acta Nat Isl 2:5–30

    Google Scholar 

  • Jakobsson SP (1972) Chemistry and distribution pattern of recent basaltic rocks in Iceland. Lithos 5:365–368

    Article  Google Scholar 

  • Jakobsson SP (1979) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat Isl 26:1–103

    Google Scholar 

  • Jakobsson SP, Jónasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jökull 58:117–138

    Google Scholar 

  • Jónasson K (2007) Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodyn 43:101–117

    Article  Google Scholar 

  • Jørgensen KA (1980) The Thórsmörk ignimbrite: an unusual comenditic pyroclastic flow in southern Iceland. J Volcanol Geotherm Res 8:7–22

    Article  Google Scholar 

  • Jørgensen KA (1987) Mineralogy and petrology of alkaline granophyric xenoliths from the Thorsmörk ignimbrite, southern Iceland. Lithos 20:153–168

    Article  Google Scholar 

  • Lacasse C, Sigurdsson H, Carey SN, Jóhannesson H, Thomas LE, Rogers NW (2007) Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol 69:373–399

    Article  Google Scholar 

  • Larsen JG (1979) Glass-bearing gabbro inclusions in hyaloclastites from Tindfjalljokull, Iceland. Lithos 12:289–302

    Article  Google Scholar 

  • Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc 148:825–833

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Ludwig KR (2008) User’s manual for Isoplot 3.70: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Publ No. 4, p 77

  • Macdonald R, Sparks RSJ, Sigurdsson H, Mattey DP, McGarvie DW, Smith RL (1987) The 1875 eruption of Askja volcano, Iceland: combined fractional crystallization and elective contamination in the generation of rhyolitic magma. Mineral Mag 51:183–202

    Article  Google Scholar 

  • Macdonald R, McGarvie DW, Pinkerton H, Smith RL, Palacz ZA (1990) Petrogenetic evolution of the Torfajökull volcanic complex, Iceland I. Relationship between the magma types. J Petrol 31:429–459

    Article  Google Scholar 

  • Marsh BD, Gunnarsson B, Congdon R, Carmody R (1991) Hawaiian basalt and Icelandic rhyolite: indicators of differentiation and partial melting. Geol Rundsch 80:481–510

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2007) Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contrib Mineral Petrol 153:593–605

    Article  Google Scholar 

  • McBirney AR (2006) Igneous petrology. Jones and Bartlett, Sudbury

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low-18O basalt from Iceland. Geochim Cosmochim Acta 38:577–588

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Lejeune A-M, Brewer TS, Macdonald R, Black S, Young S (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills Volcano, Montserrat, West Indies. Geophys Res Lett 25:3433–3435

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis MJ (2011) Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. J Petrol 52:487–539

    Article  Google Scholar 

  • Palmason G, Saemundsson K (1974) Iceland in relation to the mid-Atlantic ridge. Ann Rev Earth Planet Sci 2:25–50

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Storm S, Mironov N, van den Bogaard C, Botcharnikov R (2012) H2O-rich melt inclusions in fayalitic olivine from Hekla volcano: implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland. Earth Planet Sci Let 357–358:337–346

    Article  Google Scholar 

  • Prestvik T, Goldberg S, Karlsson H, Grönvold K (2001) Anomalous strontium and lead isotope signatures in the off-rift Öræfajökull central volcano in south-east Iceland—evidence for enriched endmember(s) of the Iceland mantle plume? Earth Planet Sci Lett 190:211–220

    Article  Google Scholar 

  • Sañudo-Wilhelmy SA, Flegal AR (1994) Temporal variations in lead concentrations and isotopic composition in the Southern California Bight. Geochim Cosmochim Acta 58:3315–3320

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Schattel N, Portnyagin M, Golowin R, Hoernle K, Bindeman I (2014) Contrasting conditions of rift and off-rift silicic magma origin on Iceland. Geophys Res Lett. doi:10.1002/2014GL060780

    Google Scholar 

  • Schmitt AK, Grove M, Harrison TM, Lovera O, Hulen J, Walters M (2003) The Geysers—Cobb Mountain Magma System, California (Part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim Cosmochim Acta 67:3423–3442

    Article  Google Scholar 

  • Schmitt AK, Stockli DF, Hausback BP (2006) Eruption and magma crystallization ages of Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He dating of zircon. J Volcanol Geotherm Res 158:281–295

    Article  Google Scholar 

  • Sigmarsson O, Hémond C, Condomines M, Fourcade S, Óskarsson N (1991) Origin of silicic magma in Iceland revealed by Th isotopes. Geology 19:621–724

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade S (1992) A detailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petrol 112:20–34

    Article  Google Scholar 

  • Sigurdsson H (1968) Petrology of acid xenoliths from Surtsey. Geol Mag 105:440–453

    Article  Google Scholar 

  • Sigurdsson H (1977) Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature 269:25–28

    Article  Google Scholar 

  • Sigurdsson H, Sparks R (1981) Petrology of rhyolitic and mixed magma ejecta from the 1975 eruption of Askja, Iceland. J Petrol 22:41–84

    Article  Google Scholar 

  • Stakes DS, Taylor HP (1992) The northern Samail ophiolite: an oxygen isotope, microprobe, and field study. J Geophys Res 97:7043–7080

    Article  Google Scholar 

  • Sverrisdottir G (2007) Hybrid magma generation preceding Plinian silicic eruptions at Hekla, Iceland: evidence from mineralogy and chemistry of two zoned deposits. Geol Mag 144:643–659

    Article  Google Scholar 

  • Taylor HPJ, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotopic systematics. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Mineral Soc Amer 16. Washington DC, pp 227–271

  • Thy P, Beard JS, Lofgren GE (1990) Experimental constraints on the origin of Icelandic rhyolites. J Geol 98:417–421

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem 53, Mineral Soc Am. Washington DC, pp 343–385

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266

    Article  Google Scholar 

  • Valley J, Lackey J, Cavosie A, Clechenko C, Spicuzza M, Basei M, Bindeman I, Ferreira V, Sial A, King E, Peck W, Sinha A, Wei C (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Article  Google Scholar 

  • Walker G (1966) Acid volcanic rocks in Iceland. Bull Volcanol 29:375–402

    Article  Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Earth Sci 87:43–56

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Zhao Z-F, Zheng Y-F (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80

    Article  Google Scholar 

  • Zheng Y-F (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307

    Article  Google Scholar 

  • Zheng Y-F (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to A.V. Sobolev, K.P. Jochum, B. Stoll and U. Weis, who provided access to, and technical assistance with, electron microprobe and laser ablation ICP-MS analyses at the Max Planck Institute (Mainz, Germany) and Axel Schmitt (UCLA) for his help and assistance with zircon dating and preliminary evaluation of raw data. We thank the Smithsonian National Museum of Natural History (Washington, DC, USA) for providing us with the standards for electron microprobe analysis and J. Valley (University of Wisconsin) for the KIM-5 zircon standard for oxygen isotopes by SIMS. The insightful reviews of Olgeir Sigmarsson and one anonymous referee helped us to substantially improve the manuscript. Editorial handling of the paper by Timothy Grove is gratefully acknowledged. This work was supported by the NSF Grants EAR 0911093 to AAG and CAREER EAR 0805972 to IBN, by the Max Planck Society (Germany) and INSU-CNRS (France). This is CRPG contribution 2378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Gurenko.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurenko, A.A., Bindeman, I.N. & Sigurdsson, I.A. To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths. Contrib Mineral Petrol 169, 49 (2015). https://doi.org/10.1007/s00410-015-1145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1145-4

Keywords

Navigation