Skip to main content
Log in

Primary inclusions of burbankite in carbonatites from the Fen complex, southern Norway

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Carbonatites in the Fen intrusive complex (southern Norway) contain abundant burbankite (confirmed by Raman microspectroscopy) as inclusions in calcite, dolomite and, less commonly, fluorapatite and pyrochlore. Typically the inclusions occur in the core of calcite or dolomite grains relatively unaffected by subsolidus processes, and are associated with Fe-poor dolomite or Sr-rich calcite, respectively. Burbankite does not exceed 30 × 50 μm in size and is characteristically absent from the peripheral areas of carbonate grains affected by recrystallization or interaction with fluids. Compositionally, the mineral falls within the following range: (Na1.51–2.16Ca0.58–1.21)(Sr1.50–2.42Ca0.28–0.57LREE0.05–0.64Ba0.06–0.41)(CO3)5 and contains low Th, but no detectable Mg, Fe or F (LREE = light rare-earth elements: Ce > La > Nd > Pr > Sm). Burbankite inclusions at Fen are interpreted as primary and indicative of Na enrichment in their parental carbonatitic magma. Dissociation of burbankite during subsolidus re-equilibration of its host phases with fluids undoubtedly served as one of the sources of LREE for the development of late-stage mineralization in the Fen complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen T (1986) Magmatic fluids in the Fen carbonatite complex, S.E. Norway. Evidence of mid-crustal fractionation from solid and fluid inclusions in apatite. Contrib Mineral Petrol 93:491–503

  • Andersen T (1988a) Origin and significance of fluid inclusions in matrix minerals in carbonatites, a case study from the Fen carbonatite complex, Norway. Mem Geol Soc India 11:25–36

  • Andersen T (1988b) Evolution of peralkaline calcite carbonatite magma in the Fen complex, Southeast Norway. Lithos 22:99–112

  • Andersen T (1989) Carbonatite-related contact metasomatism in the Fen complex, Norway: effects and petrogenetic implications. Mineral Mag 53:395–414

  • Belovitskaya YV, Pekov IV (2004) Genetic mineralogy of the burbankite group. New Data Minerals 39:50–64

    Google Scholar 

  • Böttcher ME, Gehlken P-L, Skogby H, Reutel C (1997) The vibrational spectra of BaMg(CO3)2 (norsethite). Mineral Mag 61:249–256

    Article  Google Scholar 

  • Borodin LS, Kapustin YL (1962) Burbankite – first find in the USSR. Doklady AN SSSR 147:462–465 (in Russian)

    Google Scholar 

  • Brögger WC (1921) Die Eruptivgesteine des Kristianiagebietes. IV. Das Fengebiet in Telemark, Norwegen. Videnskaps Skrifter Oslo I Mat Naturvis Klasse 9, 408 pp (in German)

  • Chakhmouradian AR, Cooper MA, Reguir EP, Moore MA (2017a) Carbocernaite from the Bear Lodge carbonatite, Wyoming: revised structure, zoning and rare-earth fractionation on a microscale. Am Mineral 102:1340–1352

  • Chakhmouradian AR, Reguir EP, Zaitsev AN (2016) Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineral Petrol 110:333–360

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017b) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274-275:188–213

    Article  Google Scholar 

  • Chebotarev DA, Veksler IV, Wohlgemuth-Ueberwasser C, Doroshkevich AG, Koch-Müller M (2019) Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa. Contrib Mineral Petrol 174:4

  • Chen W, Kamenetsky VS, Simonetti A (2013) Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nature Comm 4:2687

    Article  Google Scholar 

  • Dahlgren S (2019) REE mineralization in the Fen carbonatite complex, Telemark, Norway. A world-class exploration target for the “Hi-Tech” and “Green-shift” industry? Report, Geological Advisor 1–2019:1–86 (available from https://www.fensfeltet.no/wp-content/uploads/2020/02/)

  • Dietzel CAF, Kristandt T, Dahlgren S, Giebel RJ, Marks MAW, Wenzel T, Markl G (2019) Hydrothermal processes in the Fen alkaline-carbonatite complex, southern Norway. Ore Geol Rev 111:1–18

  • Drüppel K, Hoefs J, Okrusch M (2005) Fenitizing processes induced by ferrocarbonatite intrsion at Swartbooisdrif, NW Namibia. J Petrol 46:377–406

    Article  Google Scholar 

  • Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deady E (2018) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 93:38–59

    Article  Google Scholar 

  • Gittins J (1989) The origin and evolution of carbonatite magmas. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman ltd, London, pp 580–600

    Google Scholar 

  • Jagniecki EA, Lowenstein TK (2015) Evaporites of the Green River formation, Bridger and Piceance Creek basins: deposition, diagenesis, paleobrine chemistry, and Eocene atmospheric CO2. In: Smith ME, Carroll AR (eds) Stratigraphy and paleolimnology of the Green River formation, western USA. Springer, Binghamton, USA, pp 277–312

  • Hersum TG, Marsh BD (2007) Igneous textures: on the kinetics behind the words. Elements 3:247–252

    Article  Google Scholar 

  • Kapustin YL (1983) Features of fenitization around carbonatite bodies. Int Geol Rev 25:1393–1404

    Article  Google Scholar 

  • Kresten P, Morogan V (1986) Fenitization at the Fen complex, southern Norway. Lithos 19:27–42

  • Kresten P (1988) The chemistry of fenitization: examples from Fen, Norway. Chem Geol 68:329–349

  • Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46:915–932

    Article  Google Scholar 

  • Lee W-J, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO + FeO*)–(Na2O + K2O)–(SiO2 + Al2O3 +TiO2) – CO2. J Petrol 39:495–517

    Article  Google Scholar 

  • Luo M, Wang G, Lin C, Ye N, Zhou Y, Cheng W (2014) Na4La2(CO3)5 and CsNa5Ca5(CO3)8: two new carbonates as UV nonlinear optical materials. Inorg Chem 53:8098–8104

    Article  Google Scholar 

  • Martínez AL, Uribe AS (1995) Interfacial properties of celestite and strontianite in aqueous solutions. Minerals Eng 8:1009–1022

    Article  Google Scholar 

  • Moore M, Chakhmouradian AR, Mariano AN, Sidhu R (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol Rev 64:499–521

  • Nadeau O, Cayer A, Pelletier M, Stevenson R, Jébrak M (2015) The Paleoproterozoic Montviel carbonatite-hosted REE-Nb deposit, Abitibi, Canada: geology, mineralogy, geochemistry and genesis. Ore Geol Rev 67:314–335

    Article  Google Scholar 

  • Pecora WT, Kerr JH (1953) Burbankite and calkinsite, two new carbonate minerals from Montana. Am Mineral 38:1169–1183

    Google Scholar 

  • Platt RG, Woolley AR (1990) The carbonatites and fenites of Chipman Lake, Ontario. Can Mineral 28:241–250

    Google Scholar 

  • Rashchenko SV, Bakakin VV, Shatskiy AF, Gavryushkin PN, Seryotkin YV, Litasov KD (2017) Noncentrosymmetric Na2Ca4(CO3)5 carbonate of “M13M23XY3Z” structural type and affinity between borate and carbonate structures for design of new optical materials. Cryst Growth Des 17:6079–6084

    Article  Google Scholar 

  • Schilling J (2013) Petrography, mineralogy and whole-rock data of the major lithologies of the Fen complex. NGU report 2013-034:1–18 (https://www.ngu.no/en/publikasjon/petrography-mineralogy-and-whole-rock-data-major-lithologies-fen-complex)

  • Shatskiy A, Gavryushkin PN, Litasov KD, Koroleva ON, Kupriyanov IN, Borzdov YM, Sharygin IS, Funakoshi K, Palyanov YN, Ohtani E (2015) Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. Eur J Mineral 27:175–184

    Article  Google Scholar 

  • Subbotin VV, Voloshin AV, Pakhomovsky YA, Bakhchisaraitsev AY (1999) Calcioburbankite and burbankite from the Vuoriyarvi carbonatite massif (new data). Zapiski Vseros Mineral Obshch 128(1):78–87

    Google Scholar 

  • Sokolov SV, Rassulov VA (2013) Luminescence of burbankite-group minerals from carbonatites. Conference on Raman and luminescence spectroscopy in the earth sciences, Vienna, July 3–6, 2013. Book of abstracts, pp 93–94 (available at https://www.univie.ac.at/Mineralogie/Corals2013/docs/CORALS_Sokolov.pdf)

  • Sun J, Wu Z, Cheng H, Zhang Z, Frost RL (2014) A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta Part A: Mol Biomol Spectr 117:158–162

    Article  Google Scholar 

  • Veksler IV, Nielsen TFD, Sokolov SV (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39:2015–2031

    Article  Google Scholar 

  • Vernon RH (2004) A practical guide to rock microstructure. Cambridge Univ Press, 594 pp

  • Wall F, Mariano AF (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Min Soc, London, pp 193–225

    Google Scholar 

  • Wall F, Zaitsev AN (2004) Rare earth minerals in Kola carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Min Soc, London, pp 341–373

    Google Scholar 

  • Wyllie PJ, Biggar GM (1966) Fractional crystallization in the “carbonatite systems” CaO–MgO–CO2–H2O and CaO–CaF2–P2O5–CO2–H2O. Mineral Assoc India, IMA Vol, pp 92–105

    Google Scholar 

  • Wyllie PJ, Tuttle OF (1960) The system CaO–CO2–H2O and the origin of carbonatites. J Petrol 1:1–46

    Article  Google Scholar 

  • Zaitsev AN (2010) Nyerereite from calcite carbonatite at the Kerimasi volcano, northern Tanzania. Geol Ore Dep 52:630–640

    Article  Google Scholar 

  • Zaitsev AN, Chakhmouradian AR (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II Oxysalt minerals. Can Mineral 40:103–120

  • Zaitsev AN, Demény A, Sindern S, Wall F (2002) Burbankite group minerals and their alteration in rare earth carbonatites – source of elements and fluids (evidence from C–O and Sr–Nd isotopic data). Lithos 62:15–33

    Article  Google Scholar 

  • Zaitsev AN, Sitnikova MA, Subbotin VV, Fernández-Suárez J, Jeffries TE (2004) Sallanlatvi complex – a rare example of magnesite and siderite carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Min Soc, London, pp 201–245

    Google Scholar 

  • Zaitsev AN, Wall F, Le Bas MJ (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineral Mag 62:225–250

  • Zdorik TB (1966) Burbankite and products of its alteration. Trudy Mineral Muz Akad Nauk SSSR 17:60–75 (in Russian)

    Google Scholar 

Download references

Acknowledgements

SD acknowledges the hospitality of the Department of Geological Sciences, University of Manitoba, during his research visits. Neil Ball and Panseok Yang are thanked for their skillful help with EPMA calibration, and Mark A. Cooper for collecting X-ray diffraction data for the reference burbankite sample. REE Minerals AS is gratefully acknowledged for providing access to the core from drill-hole DDH-019. We are grateful to Anatoly N. Zaitsev, Lutz Nasdala and an anonymous referee for their insightful comments on burbankite parageneses and spectroscopy, and to Francesco Stoppa for editorial handling. Financial support for the present work was provided by the Natural Sciences and Engineering Research Council of Canada (ARC) and by the Telemark County Council (SD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton R. Chakhmouradian.

Additional information

Editorial handling: F. Stoppa

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1

(PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakhmouradian, A., Dahlgren, S. Primary inclusions of burbankite in carbonatites from the Fen complex, southern Norway. Miner Petrol 115, 161–171 (2021). https://doi.org/10.1007/s00710-021-00736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-021-00736-0

Keywords

Navigation