Skip to main content
Log in

Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The internal precision of Pb isotope analyses using single-zircon evaporation in a double-filament solid source mass spectrometer (Kober 1986) can be improved combining the evaporation of Pb directly from the single grain with a suitable Pb+ emitter-bedding technique. This is most easily done by step-wise evaporating the investigated grain at temperatures of 1700–1800 K generating on the ‘cold’ ionization filament a deposit of radiogenic Pb together with further elements and compounds derived directly from the crystal. The heating of the deposit on the ionization filament to 1400–1500 K results in long-lived and stable Pb+ ion beams. The ‘activating reagents’ in the deposit are HfO2 and SiO2. Their release from the zircon grain together with the radiogenic Pb, which presumably is sited in the crystalline zircon domains as Pb4+, is probably due to disintegration reactions of trace-element silicates hosted in the grain.

In the bedding deposited on the ionization filament thermally stable Pb/Hf/SiO2 compounds are formed (PbHfSiO5(?)). They retain the Pb isotopes on the (Re) filament up to 1400 K–1500 K and are highly efficient Pb+ ion emitters similar to the ‘Si-gel’-method (Cameron et al. 1969).

The combined evaporation/emitter-bedding technique has been applied to natural zircons of different genesis and to isotope standards. Routinely, a Pb+ ion yield of 2*10−4-1*10−3 and a relative standard deviation of the 207Pb/206Pb ratio in the order of 1% have been obtained for sub-ng- to ng-amounts of Pb from standards and samples. The method rapidly can yield Pb isotope information on the ‘concordant’ zircon phases with a standard deviation of ±15–20 Ma of the derived ages also in the case of Paleozoic zircon populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmanova MV, Leonova LL (1961) Investigation of metamictization of zircons with the aid of infrared absorption spectra. Geochem Int, pp 416–431

  • Akishin PA, Nikitin OT, Panchenkov GM (1957) A new effective ion emitter for the isotopic lead analysis. Geochem Int, pp 500–505

  • Butterman WC, Foster WR (1967) Zircon stability and the ZrO2-SiO2 phase diagram. Am Mineralogist 52:880–885

    Google Scholar 

  • Cameron AE, Smith DE, Walker RL (1969) Mass spectrometry of nanogram size samples of lead. Anal Chem 41:525–526

    Google Scholar 

  • Catanzaro EJ, Murphy TJ, Shields WR, Garner EL (1968) Absolute isotopic abundance ratios of common, equal-atom and radiogenic lead isotope standards. J Res NBS A 72:261–267

    Google Scholar 

  • Chukhonin AP (1978) A mass spectrometric study of the forms taken by lead in zircon. Geochim Int 15:186–189

    Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high massresolution ion microprobe. J Geophys Res Suppl 89:B525-B534

    Google Scholar 

  • Curtis CE, Sowman HG (1953) Investigation of the thermal dissociation, reassociation, and synthesis of zircon. J Am Ceram Soc 36:190–198

    Google Scholar 

  • Drach V von (1978) Mineralalter im Schwarzwald. Unpubl thesis, Heidelberg

  • Fleischer M (1955) Hf content and Hf-Zr ratio in minerals and rocks. US Geol Survey Bull 1021A:1–13

    Google Scholar 

  • Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W (1983) Ion microprobe identification of 4100–4200 Myr old terrestrial zircons. Nature 304:616–618

    Google Scholar 

  • Gentry RV, Sworski TJ, McKown HS, Smith DH, Eby RE, Christie WH (1982) Differential lead retention in zircons: implications for nuclear waste containment. Science 216:296–297

    Google Scholar 

  • Görz H (1974) Microprobe studies of inclusions in zircons and compilation of minor and trace elements from the literature. Chem Erde 33:326–357

    Google Scholar 

  • Gottfried D, Senftle FE, Waring CL (1956) Age determination of zircon crystals from Ceylon. Am Mineral 41:157–161

    Google Scholar 

  • Henderson GH, Bateson S (1934) A quantitative study of pleochroitic haloes. 1st Proc R Soc London Ser A 145:563–581

    Google Scholar 

  • Hinthorne JR, Anderson CA, Conrad RL, Lovering JF (1979) Single-grain 207Pb/206Pb and U/Pb age determinations with a 10 μm spatial resolution using the ion microprobe mass analyser (IMMA). Chem Geol 25:271–303

    Google Scholar 

  • Hofmann A, Köhler H (1973) Whole rock Rb-Sr ages of anatectic gneisses from the Schwarzwald, SW-Germany. N Jahrb Mineral Abh 119:163–187

    Google Scholar 

  • Hoppe G (1963) Die Verwendbarkeit morphologischer Erscheinungen an akzessorischen Zirkonen für petrologische Auswertungen. Abh Dtsch Akad Wiss Berlin 1

  • Kober B (1985) Radiogenblei-Evaporation aus Zirkon-Einzelkristallen in einer Zweiband-Thermionenquelle zur Bestimmung von 207Pb/206Pb-Altern. Fortschr Mineral 63:117

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:482–490

    Google Scholar 

  • Kober B, Hradetzky H, Lippolt HJ (1986) Radiogenblei-Evaporationsstudien an einzelnen Zirkonkristallen zur präherzynischen Entwicklung des Grundgebirges im Zentralschwarzwald, SWDeutschland. Fortschr Mineral 64:81

    Google Scholar 

  • Köhler H (1970) Die Änderung der Zirkonmorphologie mit dem Differentiationsgrad eines Granits. N Jahrb Mineral Mh 9:405–420

    Google Scholar 

  • Köppel V (1974) Isotopic U-Pb ages of monazites and zircons from the crust-mantle transition and adjacent units of the Ivrea and Ceneri zones (Southern Alps, Italy). Contrib Mineral Petrol 43:55–70

    Google Scholar 

  • Köppel V, Sommerauer J (1974) Trace elements and the behaviour of the U-Pb system in inherited and newly formed zircons. Contrib Mineral Petrol 43:71–82

    Google Scholar 

  • Kosztolanyi C (1965) Nouvelle methode d'analyse isotopique des zircons a l'etat naturel apres attaque directe sur le filament. C R Acad Sci 261:5849–5851

    Google Scholar 

  • Krasnobayev AA, Polezhayev YM, Yunikov BA, Novoselov BK (1974) Genetic nature of metamict zircon. Geochim Int 9:195–207

    Google Scholar 

  • Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Google Scholar 

  • Lancelot J, Vitrac A, Allegre CJ (1976) Uranium and lead isotope dating with grain by grain zircon analysis: a study of complex geological history with a single rock. Earth Planet Sci Lett 29:357–366

    Google Scholar 

  • Levskiy LK, Murin AN, Zaslavskiy VG (1969) Use of thermionic emission in isotope analysis of lead and lithium. Geochem Int 6:601–605

    Google Scholar 

  • Lipova IM, Mayeva MM (1971) The relation of Zr/Hf ratio in zircon to crystal morphology. Geochem Int 8:785–791

    Google Scholar 

  • Lipova IM, Kuznetsova GA, Makarov ES (1965) An investigation of the metamict state in zircons and cyrtolites. Geochem Int 2:513–525

    Google Scholar 

  • Nekrasova RA, Rozhdestvenskaya IV (1970) The ZrO2/HfO2 ratio in zircons from kimberlites and alluvial sediments. Geochem Int 7:536–543

    Google Scholar 

  • Oosthuyzen EJ, Burger AJ (1973) The suitability of apatite as an age indicator by the uranium-lead method. Earth Planet Sci Lett 18:29–36

    Google Scholar 

  • Pavlenko AS, Vainshtein EE, Shevaleevskii ID (1957) On the Hafnium-Zirkonium ratio in zircon of igneous and metasomatic rocks. Geochem Int, pp 411–430

  • Pidgeon RT, O'Neil JR, Silver LT (1966) Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions. Science 154:1538–1540

    Google Scholar 

  • Poldervaart A (1950) Statistical studies of zircon as a criterion in granitization. Nature 165:574–575

    Google Scholar 

  • Poldervaart A (1955) Zircon in rocks. 1. Sedimentary rocks. Am J Sci 253:433–461

    Google Scholar 

  • Poldervaart A (1956) Zircon in rocks. 2. Igneous rocks. Am J Sci 254:521–554

    Google Scholar 

  • Polezhayev YM (1974) On mechanism of metamictization of minerals under the action of autoradiation. Geochim Int 11:1157–1161

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Google Scholar 

  • Pupin JP, Turco G (1981) Le zircon, mineral commun significatif des roches endogenes et exogenes. Bull Mineral 104:724–731

    Google Scholar 

  • Pyatenko YA (1965) Isomorphism of atoms and its mineralogical consequences. Geochem Int 2:268

    Google Scholar 

  • Pyatenko YA (1970) Behavior of metamict minerals on heating and the general problem of metamictization. Geochem Int 7:758–763

    Google Scholar 

  • Ruh R, Garrett HJ, Domagala RF, Tallan NM (1968) The system Zirconia-Hafnia. J Am Ceram Soc 51:23–27

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxydes and fluorides. Acta Cryst 625:925–946

    Google Scholar 

  • Shevaleevskii ID, Pavlenko AS, Vainshtein EE (1960) Dependence of the behavior of zirconium and hafnium on the petrochemical characteristics of igneous and alkalic metasomatic rocks. Geochem Int, pp 262–272

  • Silver LT (1963) The relation between radioactivity and discordance in zircons. Nucl Sci Ser 38, Nat Acad Sci Publ 1075, Washington, pp 34–42

  • Smirnova EV (1967) In: Gmelin (1970) Handbuch der anorganischen Chemie: Blei, C3, p 851

  • Sommerauer J (1976) Die chemisch-physikalische Stabilität natürlicher Zirkone und ihr U-(Th)-Pb System. Unpubl thesis, ETH Zürich, No. 5755, p 151

  • Steiger RH, Bär MT, Büsch W (1973) The zircon age of an anatectic rock in the Central Schwarzwald. Fortschr Mineral 50:131–132

    Google Scholar 

  • Sunin LV, Malyshev VI (1983) The thermoisochron method of determining Pb-Pb ages. Geochem Int 20:34–45

    Google Scholar 

  • Tera F, Wasserburg GJ (1975) Precise isotopic analyses of lead in picomole and subpicomole quantities. Anal Chem 47:2214–2220

    Google Scholar 

  • Tilton GR, Aldrich LT (1955) The reliability of zircon as age indicator. Trans Am Geophys Union 36:531–536

    Google Scholar 

  • Vainshtein EE, Ginzburg AI, Shevaleevskii ID (1959) The Hf/Zr ratio in zircons from granite pegmatites. Geochem Int, pp 151–157

  • Williams IS, Compston W, Black LP, Ireland TR, Foster JJ (1984) Unsupported radiogenic lead in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib Mineral Petrol 88:322–327

    Google Scholar 

  • Wollen GM (1963) Diffusionless phase transformations in zirconia and hafnia. J Am Ceram Soc 46:418–422

    Google Scholar 

  • Zykov SI, Stupnikova NI (1957) Isotopic analysis of lead not requiring any preliminary chemical preparation of the mineral. Geochem Int, pp 506–510

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kober, B. Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contr. Mineral. and Petrol. 96, 63–71 (1987). https://doi.org/10.1007/BF00375526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375526

Keywords

Navigation