Skip to main content
Log in

40Ar/39Ar geochronology of basalts from Kaua‘i, Hawai‘i: implications for shield-stage evolution of Hawaiian volcanoes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Fourteen whole rock samples were analyzed for 40Ar/39Ar geochronology to determine the timing of an important transition in mantle source geochemistry that occurred on the island of Kaua‘i, located at the junction between the Northwest Hawaiian Ridge and the Hawaiian Islands. Kaua‘i’s shield-stage lavas have lead (Pb) isotopic compositions that change from west to east across the island. Given previous age constraints, it was unclear whether western and eastern portions of the shield were coeval. The new dates from this study range from 4.95 ± 0.19 Ma to 4.02 ± 0.04 Ma, decrease broadly from west to east Kaua‘i, and correlate with Pb isotopic ratios. The results indicate that the transition from Kea to Loa isotopic compositions across Kaua‘i occurred between ~4.7 and 4.4 Ma. The new 40Ar/39Ar geochronological results require a modification of the order of shield-building events for Kaua‘i. The easternmost lavas of the Nāpali Member formed after the westernmost lavas and are unlikely their stratigraphic equivalents, as previously inferred from mapping and structural observations. The easternmost lavas of the Nāpali Member likely represent the final period of shield-stage volcanism on Kaua‘i, which is supported by the location of the residual gravity anomaly beneath the Līhu‘e Basin in eastern Kaua‘i. This work highlights the importance of combining field-based observations with geochemical, isotopic, and geochronological data when assessing the shield-stage evolution of Hawaiian volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M (2005) Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434:851–856

    Article  Google Scholar 

  • Calvert AT, Lanphere MA (2006) Argon geochronology of Kilauea’s early submarine history. J. Volcanol. Geotherm. Res. 151:1–18

    Article  Google Scholar 

  • Clague DA, Sherrod DR (2014) Growth and degradation of Hawaiian volcanoes. In: Poland MP et al. (eds) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, pp 97–146.

  • Cousens BL, Clague DA (2015) Shield to rejuvenated stage volcanism on Kauai and Niihau, Hawaiian Islands. Journal of Petrology 56(8):1547–1584. https://doi.org/10.1093/petrology/egv045

    Article  Google Scholar 

  • DePaolo DJ, Bryce JG, Dodson A, Shuster DL, Kennedy BM (2001) Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem. Geophys. Geosyst. 2:2000GC000139

    Article  Google Scholar 

  • Flinders AF, Ito G, Garcia MO (2010) Gravity anomalies of the Northern Hawaiian Islands: implications on the shield evolutions of Kauai and Niihau. J. Geophys. Res. 115:B08412

    Article  Google Scholar 

  • French S, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525:95–101

    Article  Google Scholar 

  • Garcia MO, Caplan-Auerback J, De Carlo EH, Kurz MD, Becker N (2006) Geology, geochemistry and earthquake history of Loihi Seamount, Hawaii’s youngest volcano. Chimie der Erde 66:81–108

    Article  Google Scholar 

  • Garcia MO, Jicha BR, Marske JP, Pietruszka AJ (2016) How old is Kīlauea Volcano (Hawai‘i)? Insights from 40Ar/39Ar dating of the 1.7-km-deep SOH-1 core. Geology 45(1). https://doi.org/10.1130/G38419.1

  • Garcia MO, Swinnard L, Weis D, Greene AR, Tagami T, Sano H, Gandy CE (2010) Petrology, geochemistry and geochronology of Kaua‘i lavas over 4.5 Myr: implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. J. Petrol. 51(7):1507–1540

    Article  Google Scholar 

  • Hanano D, Weis D, Scoates JS, Aciego S, DePaolo DJ (2010) Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochem. Geophys. Geosyst. 11. https://doi.org/10.1029/2009GC002782

  • Harrison LN, Weis D (2018) The size and emergence of geochemical heterogeneities in the Hawaiian mantle plume constrained by Sr-Nd-Hf isotopic variation over ∼47 million years. Geochem. Geophys. Geosyst. 19:2823–2842. https://doi.org/10.1029/2017GC007389

    Article  Google Scholar 

  • Harrison LN, Weis D, Garcia MO (2017) The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463:298–309. https://doi.org/10.1016/j.epsl.2017.01.027

    Article  Google Scholar 

  • Heath M, Phillips D, Matchan EL (2018) An evidence-based approach to accurate interpretation of 40Ar/39Ar ages from basaltic rocks. Earth Planet. Sci. Lett. 498:65–76. https://doi.org/10.1016/j.epsl.2018.06.024

    Article  Google Scholar 

  • Heaton DE, Koppers AAP (2019) High-resolution 40Ar/39Ar geochronology of the Louisville Seamounts IODP Expedition 330 drill sites: implications for the duration of hot spot–related volcanism and age progressions. Geochem. Geophys. Geosyst. 20:1–30. https://doi.org/10.1029/2018GC007759

    Article  Google Scholar 

  • Hofmann AW, Farnetani CG (2013) Two views of Hawaiian plume structure. Geochem. Geophys. Geosyst. 14:5308–5322. https://doi.org/10.1002/2013GC004942

    Article  Google Scholar 

  • Holcomb RT, Reiners PW, Nelson BK, Sawyer N-LE (1997) Evidence for two shield volcanoes exposed on the island of Kauai, Hawaii. Geology 25:811–814

    Article  Google Scholar 

  • Jackson ED, Silver EA, Dalrymple GB (1972) Hawaiian-emperor chain and its relation to Cenozoic circumpacific tectonics. Bull. Geol. Soc. Am. 83(3):601–618

    Article  Google Scholar 

  • Jiang Q, Jourdan F, Olierook HKH, Merle RE, Verati C, Mayers C (2021) 40Ar/39Ar dating of basaltic rocks and the pitfalls of plagioclase alteration. Geochimica et Cosmochimica Acta 314:334–357. https://doi.org/10.1016/j.gca.2021.08.016

    Article  Google Scholar 

  • Jourdan F, Renne P (2014) Neutron-induced 37Ar recoil ejection in Ca-rich minerals and implications for 40Ar/39Ar dating. Geol. Soc. Lond. Spec. Publ. 378:33–52. https://doi.org/10.1144/SP378.15

    Article  Google Scholar 

  • Jourdan F, Sharp WD, Renne PR (2012) 40Ar/39Ar ages for deep (~3.3 km) samples from the Hawaii Scientific Drilling Project, Mauna Kea volcano, Hawaii. Geochem. Geophys. Geosyst. 5(13). https://doi.org/10.1029/2011GC004017

  • Koppers AAP (2002) ArArCALC—Software for 40Ar/39Ar age calculations. Comput. Geosci., 28(5):605–619. https://doi.org/10.1016/S0098-3004(01)00095-4

  • Koppers AAP, Gowen MD, Colwell LE, Gee JS, Lonsdale PF, Mahoney JJ, Duncan RA (2011b) New 40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter–hot spot motion. Geochem. Geophys. Geosyst. 12(7). https://doi.org/10.1029/2011GC003804

  • Koppers AAP, Russell JA, Roberts J, Jackson MG, Konter JG, Wright DJ, Staudigel H, Hart SR (2011a) Age systematics of two young en echelon Samoan volcanic trails. Geochem. Geophys. Geosyst. 12(7). https://doi.org/10.1029/2010GC003438

  • Koppers AAP, Staudigel H, Wijbrans JR (2000) Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the Ar-40/Ar-39 incremental heating technique. Chem. Geol. 166(1–2):139–158. https://doi.org/10.1016/S0009-2541(99)00188-6

    Article  Google Scholar 

  • Krivoy HL, Baker M Jr, Moe EE (1965) A reconnaissance gravity survey of the Island of Kauai, Hawaii. Pac. Sci. 19(3):354–358

    Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504

    Article  Google Scholar 

  • Lanphere MA, Dalrymple GB (1976) Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique. Earth Planet. Sci. Lett. 32:141–148. https://doi.org/10.1016/0012-821X(76)90052-2

    Article  Google Scholar 

  • Lee J-Y, Marti K, Severinghaus JP, Kawamura K, Yoo H-S, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70:4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563.4.1

    Article  Google Scholar 

  • Macdonald GA, Davis DA, Cox DC (1960) Geology and ground-water resources of the island of Kauai. Hawaii Div. Hydrography Bull. 13:212

    Google Scholar 

  • McDougall I (1964) Potassium-argon ages from lavas of the Hawaiian Islands. Geol. Soc. Am. Bull. 75:107–128

    Article  Google Scholar 

  • McDougall I (1979) Age of shield-building volcanism of Kauai and linear migration of volcanism in the Hawaiian Island chain. Earth Planet. Sci. Lett. 46:31–42

    Article  Google Scholar 

  • Mercer CM, Hodges KV (2016) ArAR—a software tool to promote the robust comparison of K-Ar and 40Ar/39Ar dates published using different decay, isotopic, and monitor-age parameters. Chem. Geol. 440:148–163. https://doi.org/10.1016/j.chemgeo.2016.06.020

    Article  Google Scholar 

  • Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 64:73–98. https://doi.org/10.1016/S0016-7037(99)00204-5

    Article  Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Mukhopadhyay S, Lassiter JC, Farley KA, Bogue SW (2003) Geochemistry of Kauai shield-stage lavas: implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosyst. 4:1–32. https://doi.org/10.1029/2002GC000342

    Article  Google Scholar 

  • Nobre Silva IG, Weis D, Scoates JS (2013) Isotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean. Geochemistry, Geophysics, Geosystems 14:659–676. https://doi.org/10.1002/ggge.20047

    Article  Google Scholar 

  • Pietruszka AJ, Garcia MO (1999) A rapid fluctuation in the mantle source and melting history of Kilauea volcano inferred from the geochemistry of its historical summit lavas (1790–1982). Journal of Petrology 40(8):1321–1342. https://doi.org/10.1093/petroj/40.8.1321

    Article  Google Scholar 

  • Pietruszka AJ, Marske JP, Heaton DE, Garcia MO, Rhodes JM (2018) An isotopic perspective into the magmatic evolution and architecture of the rift zones of Kīlauea Volcano. Journal of Petrology 59(12):2311–2352. https://doi.org/10.1093/petrology/egy098

    Article  Google Scholar 

  • Pietruszka AJ, Heaton DE, Garcia MO, Marske JP (2019) Explosive summit collapse of Kīlauea Volcano in 1924 preceded by a decade of crustal contamination and anomalous Pb isotope ratios. Geochimica et Cosmochimica Acta 258:120–137. https://doi.org/10.1016/j.gca.2019.05.029

  • Reiners PW, Carlson RW, Renne PR, Cooper KM, Granger DE, McLean NM, Schoene B (2018) Geochronology and thermochronology: Hoboken. John Wiley & Sons, New Jersey, p 464

    Google Scholar 

  • Reiners PW, Nelson BK, Izuka SK (1998) Structural and petrologic evolution of the Lihue basin and eastern Kauai, Hawaii. Geol. Soc. Am. Bull. 111:674–685

    Article  Google Scholar 

  • Renne PR, Deino AL, Hames WE, Heizler MT, Hemming SR, Hodges KV, Koppers AP, Mark DF, Morgan LE, Phillips D, Singer BS, Turrin BD, Villa IM, Villeneuve M, Wijbrans JR (2009) Data reporting norms for 40Ar/39Ar geochronology. Quat. Geochronol. 4:346–352. https://doi.org/10.1016/j.quageo.2009.06.005

    Article  Google Scholar 

  • Rhodes JM, Vollinger MJ (2004) Composition of basaltic lavas sampled by phase-2 of the Hawaii scientific drilling project: geochemical stratigraphy and magma types. Geochem. Geophys. Geosyst. 5:Q03G13. https://doi.org/10.1029/2002GC000434

    Article  Google Scholar 

  • Schaen AJ, Jicha BR, Hodges KV, Vermeesch P, et al. (2020) Interpreting and reporting 40Ar/39Ar geochronologic data. Geol. Soc. Am. Bull., 133(3-4):461-487. https://doi.org/10.1130/B35560.1

  • Sharp WD, Renne PR (2005) The 40Ar/39Ar dating of core recovered by the Hawaii scientific drilling project (phase 2), Hilo, Hawaii. Geochem. Geophys. Geosyst. 6(4):Q04G17. https://doi.org/10.1029/2004GC000846

    Article  Google Scholar 

  • Sherrod DR, Sinton JM, Watkins SE, Brunt KM (2007) Geologic map of the State of Hawaii. U.S. Geol. Surv. Open‐File Rep. 2007‐1089 83

  • Sherrod DR, Izuka SK, Cousens BL (2015) Onset of rejuvenated-stage volcanism and the formation of Lihue Basin: Kauai events that occurred 3-4 million years ago. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface, American Geophysical Union Geophysical Monograph, vol 208, pp 105–123

    Google Scholar 

  • Sherrod DR, Sinton JM, Watkins SE, Brunt KM (2021) Geologic map of the State of Hawaiʻi: U.S. Geological Survey Scientific Investigations Map 3143, pamphlet 72 p., 5 sheets, scales 1:100,000 and 1:250,000. https://doi.org/10.3133/sim3143

  • Tatsumoto M (1978) Isotopic composition of lead in oceanic basalt and implication to mantle evolution. Earth Planet. Sci. Lett. 38:63–87

    Article  Google Scholar 

  • Weis D, Garcia MO, Rhodes JM, Jellinek M, Scoates JS (2011) Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4:831–838

    Article  Google Scholar 

  • Weis D, Harrison LN, McMillan R, Williamson NMB (2020) Fine-scale structure of Earth’s deep mantle resolved through statistical analysis of Hawaiian basalt geochemistry. Geochem. Geophys. Geosyst. 21. https://doi.org/10.1029/2020GC009292

  • Williamson NMB, Weis D, Scoates JS, Pelletier H, Garcia MO (2019) Tracking the geochemical transition between the Kea-dominated Northwest Hawaiian Ridge and the bilateral Loa-Kea trends of the Hawaiian Islands. Geochem. Geophys. Geosyst. 20:4354–4369. https://doi.org/10.1029/2019GC008451

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jamie Cutts, Lauren Harrison, Corey Wall, and Chuck Blay for the assistance in the field, sample collection, and discussions. Sincere thanks to Dan Miggins at the Argon Geochronology Laboratory, Oregon State University, for sample preparation and guidance during and after the analytical sessions. Thanks also to Anthony Koppers for the discussions about data reliability and to Jamie Cutts for early manuscript reviews. We are grateful for the constructive reviews provided by Fred Jourdan and two anonymous reviewers, and the careful editorial handling provided by Loÿc Vanderkluysen.

Funding

Research was supported by a National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to Dominique Weis and a NSERC Collaborative Research and Training Experience Multidisciplinary Applied Geochemistry Network Program scholarship to Nicole Williamson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. B. Williamson.

Additional information

Editorial responsibility: L. Vanderkluysen

Supplementary information

445_2023_1649_MOESM1_ESM.xlsx

Online Resource 1 Sample details of Kaua'i basalts and major element oxide (wt.%) compositions of whole rocks (XLSX 13.1 KB)

445_2023_1649_MOESM2_ESM.xlsx

Online Resource 2 Compilation and comparison of shield-stage dates from this and previous studies of basalts from Kaua‘i (organized by volcanic member) (XLSX 133 KB)

445_2023_1649_MOESM3_ESM.pdf

Online Resource 3 Thin section scans (cross-polarized light) of samples dated in this study. Field of view is ~4.5 cm x 2.5 cm for all thin sections and sample names are indicated (2.47 MB)

445_2023_1649_MOESM4_ESM.zip

Online Resource 4 Metadata, age plateaus, and isochrons for samples analyzed at the Argon Geochronology Laboratory, Oregon State University in 2018 and 2020. OR4 is presented as two Excel files per sample: one contains all details and the other is a one-page summary (ZIP 2.92 MB)

Online Resource 5 Literature Pb isotopic compositions for Kaua‘i shield basalts used in this study (XLSX 15.8 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, N.M.B., Weis, D., Scoates, J.S. et al. 40Ar/39Ar geochronology of basalts from Kaua‘i, Hawai‘i: implications for shield-stage evolution of Hawaiian volcanoes. Bull Volcanol 85, 37 (2023). https://doi.org/10.1007/s00445-023-01649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01649-w

Keywords

Navigation