Skip to main content
Log in

Effects of ethylenediurea (EDU) on apoplast and chloroplast proteome in two wheat varieties under high ambient ozone: an approach to investigate EDU’s mode of action

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Rising tropospheric ozone (O3) is a serious threat to plants and animals in the present climate change scenario. High tropospheric O3 has the capability to disrupt cellular organelles leading to impaired photosynthesis and significant yield reduction. Apoplast and chloroplast are two important cellular components in a plant system. Their proteomic response with ethylenediurea (EDU) treatment under tropospheric O3 has not been explored till date. EDU (an organic compound) protects plants exclusively against harmful O3 effects through activation of antioxidant defense mechanism. The present study investigated the mode of action of EDU (hereafter MAE) by identifying proteins involved in apoplast and chloroplast pathways. Two wheat varieties viz. Kundan and PBW 343 (hereafter K and P respectively) and three EDU treatments (0= control, 200, and 300 ppm) have been used for the study. In apoplast isolates, proteins such as superoxide dismutase (SOD), amino methyltransferase, catalase, and Germin-like protein have shown active role by maintaining antioxidant defense system under EDU treatment. Differential expression of these proteins leads to enhanced antioxidative defense mechanisms inside and outside the cell. Chloroplast proteins such as Rubisco, Ferredoxin NADP- reductase (FNR), fructose,1-6 bis phosphatase (FBPase), ATP synthase, vacuolar proton ATPase, and chaperonin have regulated their abundance to minimize ozone stress under EDU treatment. After analyzing apoplast and chloroplast protein abundance, we have drawn a schematic representation of the MAE working mechanism. The present study showed that plants can be capable of O3 tolerance, which could be improved by optimizing the apoplast ROS pool under EDU treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2(8):947–959

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Nanjo Y, Sawada H, Kohno Y, Komatsu S (2010) Ozone stress induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics 10(14):2605–2619

    Article  CAS  PubMed  Google Scholar 

  • Alves M, Francisco R, Martins I, Ricardo CPP (2006) Analysis of Lupinus albus leaf apoplastic proteins in response to boron deficiency. Plant Soil 279:1–11

    Article  CAS  Google Scholar 

  • Arnon D (1949) Estimation of Total chlorophyll. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1987) Production and scavenging of active oxygen in photosynthesis. Photoinhibition:227–287

  • Ashrafuzzaman M, Lubna FA, Holtkamp F, Manning WJ, Kraska T, Frei M (2017) Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environ Pollut 230:339–350

    Article  CAS  PubMed  Google Scholar 

  • Barcelo AR, Pomar F, Lopez-Serrano M, Pedreno MA (2003) Peroxidase: a multifunctional enzyme in grapevines. Funct Plant Biol 30:577–591

    Article  PubMed  Google Scholar 

  • Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, Ainsworth EA (2012) Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol 160:1827–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Ward D, Ribeiro A, Paoletti E, Miranda AI (2020) Assessment of tropospheric ozone phytotoxic effects on the grapevine (Vitis vinifera L.): A review. Atmos Environ 117924.

  • Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Jolivet Y, Hausman JF, Dizengremel P, Renaut J (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7(10):1584–1599

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal biochem 72(1-2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Env 17(2):153–162

    Article  CAS  Google Scholar 

  • Brunschon-Harti S, Fangmeier A, Jager H (1995) Effects of ethylenediurea and ozone on the antioxidative system in beans (Phaseolus vulgaris L.). Environ Poll 90:95–103

    Article  CAS  Google Scholar 

  • Carnahan JE, Jenner EL, Wat EKW (1978) Prevention of ozone injury to plants by a new protectant chemical. Phytopathology 68:1225–1229

    Article  CAS  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environ Poll 157:1461–1469

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  CAS  PubMed  Google Scholar 

  • Chameides WL (1989) The chemistry of ozone deposition to plant leave: Role of ascorbic acid. Environ Sci Technol 23:595–600

    Article  CAS  Google Scholar 

  • Chen Z, Gao Z, Sun Y, Wang Y, Yao Y, Zhai H, Du Y (2020) Analyzing the grape leaf proteome and photosynthetic process provides insights into the injury mechanisms of ozone stress. Plant Growth Regul 91:143–155

    Article  CAS  Google Scholar 

  • Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7(7):2980–2998

    Article  CAS  PubMed  Google Scholar 

  • Christ MM, Ainsworth EA, Nelson R, Schurr U (2006) Anticipated yield loss in field-grown soybean under elevated ozone can be avoided at the expense of leaf growth during early reproductive growth stages in favorable environmental conditions. J Exp Bot 57:2267–2275

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias AA, Ayala JW, Reyes JL, Hernandez M, Garciarrubio A (1995) Cell-wall proteins induced by water deficit in bean (Phaseolus vulgaris L.) seedlings. Plant physiol 107(4):1119–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leeuw FAAM, Van Zantvoort EDG (1997) Mapping of exceedances of ozone critical levels for crops and forest trees in the Netherlands: preliminary results. Environ Poll 96(1):89–98

    Article  Google Scholar 

  • Dietz KJ (1997) Functions and responses of the leaf apoplast under stress. In Progress in Botany Springer, Berlin, Heidelberg. pp. 221-254.

  • Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Bioch 39:729–742

    Article  CAS  Google Scholar 

  • Dizengremel P, Thiec DL, Bagard M, Jolivet Y (2008) Ozone risk assessment for plants: central role of metabolism dependent changes in reducing power. Environ Poll 156:11–15

    Article  CAS  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol R 64(1):153–179

    Article  CAS  Google Scholar 

  • Emberson LD, Pleijel H, Ainsworth EA, Berg MVD, Ren W, Osborne S, Mills G, Pandey D, Dentener F, Büker P, Ewert F, Koeble R, Dingenen RV (2018) Ozone effects on crops and consideration in crop models. Eur J Agron 100:19–34

    Article  CAS  Google Scholar 

  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant physiol 133(4):1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Change Biol 14:2696–2708

    Article  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28(8):997–1011

    Article  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. The Plant Cell 16(2):478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J, Martin MV, Mills G, Heald CL, Harmens H, Hayes F, Sharps K, Bender J, Ashmore MR (2016) Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol Evol 6:8785–8799

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatta L, Mancino L, Federico R (1997) Translocation and persistence of EDU (ethylenediurea) in plants: the relationship with its role in ozone damage. Environ Poll 96:445–448

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goyer A, Haslekås C, Miginiac-Maslow M, Klein U, Le Marechal P, Jacquot JP, Decottignies P (2002) Isolation and characterization of a thioredoxin H-dependent peroxidase from Chlamydomonas reinhardti L. FEBS J 269(1):272–282

    CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  CAS  PubMed  Google Scholar 

  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100(2):593–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Sharma M, Majumder B, Maurya VK, Lohani M, Deeba F, Pandey V (2018) Impact of Ethylene Diurea (EDU) on growth, yield and proteome of two winter wheat varieties grown under high ambient ozone phytotoxicity. Chemosphere 196:161–173

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Sharma M, Majumder B, Maurya VK, Deeba F, Zhang JL, Pandey V (2020) Effects of ethylenediurea (EDU) on regulatory proteins in two maize (Zea mays L.) varieties under high tropospheric ozone phytotoxicity. Plant Physiol Biochem 154:675–688

    Article  CAS  PubMed  Google Scholar 

  • Haikio E, Freiwald V, Julkunen-Tiitto R, Beuker E (2008) Differences in leaf characteristics between ozone-sensitive and ozone tolerant hybrid aspen (Populus tremula * Populus tremuloides) clones. Tree Physiol 29:53–66

    Article  PubMed  CAS  Google Scholar 

  • Heath RL (1980) Initial events in injury to plants by air pollutant. Annu Rev Plantt Physiol 31:395–4311

    Article  CAS  Google Scholar 

  • Heath RL (1988) Biochemical mechanisms of pollutant stress. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of Crop Loss from Air Pollutants. Elsevier, New York, pp 259–286

    Chapter  Google Scholar 

  • Kamal AHM, Cho K, Choi JS, Bae KH, Komatsu S, Uozumi N, Woo SH (2013) The wheat chloroplastic proteome. J proteomics 93:326–342

    Article  CAS  PubMed  Google Scholar 

  • Kivimaenpaa M, Sellden G, Sutinen S (2005) Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics. Environ Poll 137(3):466–475

    Article  CAS  Google Scholar 

  • Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036

    Article  Google Scholar 

  • Kerstiens G, Lendzian KJ (1989) Interaction between ozone and plant cuticles. I. ozone deposition and permeability. New Phytol 112:13–19

    Article  CAS  Google Scholar 

  • Kim EY, Choi YH, Lee JI, Kim IH, Nam TJ (2015) Antioxidant activity of oxygen evolving enhancer protein1 purified from Capsosiphon fulvescens. J Food Sci 80(6):H1412–H1417

    Article  CAS  PubMed  Google Scholar 

  • Koistinen KM, Hassinen VH, Gynther PAM, Lehesranta SJ, Keinänen SI et al (2002) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol 155:381–391

    Article  CAS  PubMed  Google Scholar 

  • Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta 1857(3):247–255

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Bennett JH, Heggestad HF (1981) Retardation of senescence in red clover leaf discs by a new antiozonant, N- [2-(2-oxo-1- imidazolidinyl) ethyl]-N-phenylurea. Plant Physiol 67:347–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EH, Chen CM (1982) Studies on the mechanisms of ozone tolerance: Cytokinin-like activity of N-[2-(2-oxo-1-imidazolidinyl) ethyl]- N'-phenylurea, a compound protecting against ozone injury. Physiolo Plantarum 56(4):486–491

    Article  CAS  Google Scholar 

  • Lee EH, Upadhyaya A, Agrawal M, Rowland RA (1997) Mechanisms of ethylenediurea (EDU) induced ozone protection: re-examination of free radical scavenger systems in snap bean exposed to O3. Env Exp Bot 38:199–209

    Article  CAS  Google Scholar 

  • Lefohn AS, Malley CS, Smith L, Wells B, Hazucha M, Simon H, Naik V, Mills G, Schultz MG, Paoletti E, De Marco A, Xu XB, Zhang L, Wang T, Neufeld HS, Musselman RC, Tarasick D, Brauer M, Feng ZZ, Tang HY, Kobayashi K, Sicard P, Solberg S, Gerosa G (2018) Tropospheric ozone assessment report: global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa-Sci Anthrop 6:39

    Article  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO (2005) Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138:1690–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Naidu SL (2002) Effects of oxidants at the biochemical, cell and physiological levels, with reference to ozone. In: Bell JNB, Treshow M (Eds.), Air Pollution and Plant Life, second ed. Wiley, Wes Sussex, UK), pp. 69–88.

  • LRTAP (2017) Mapping critical levels for vegetation, chapter III of manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE convention on long-range transboundary air pollution. On web at. Accessed date: www.icpmapping.org. (Accessed 28 June 2020).

  • Manning WJ, Paoletti E, Sandermann H Jr, Ernst D (2011) Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ Poll 159:3283–3293

    Article  CAS  Google Scholar 

  • Mostek A, Börner A, Weidner S (2016) Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley. Plant Physiol Bioch 99:150–161

    Article  CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Vcchia FD, Sgherri CLM (1998) Thylakoid bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiol Plantarum 104:630–638

    Article  CAS  Google Scholar 

  • Oksanen E, Pandey V, Pandey AK, Keski-Saari S, Kontunen-Soppela S, Sharma C (2013) Impacts of increasing ozone on Indian plants. Environ Pollut 177:189–200

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E (2014) Differences in responses of two mustard cultivars to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Castagna A, Ranieri A, Tagliaferro F (2008) Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): roles of biochemical changes and decreased stomatal conductance in enhancement of growth. Environ Poll 155(3):464–472

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Ferrara AM (2009) Use of antiozonant ethylenediurea (EDU) in Italy: verification of the effects of ambient ozone on crop plants and trees and investigation of EDU’s mode of action. Environ Poll 157:1453–1460

    Article  CAS  Google Scholar 

  • Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijka KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12(3):319–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitcher LH, Brennan E, Zilinakas BA (1992) The antiozonant ethylenediurea does not act via superoxide dismutase induction in bean. Plant Physiol 99:1388–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portis AR, Salvucci ME, Ogren WL (1986) Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulose bisphosphate concentrations by Rubisco activase. Plant Physiol 82(4):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai R (2020) Threat imposed by O3-induced ROS on defense, nitrogen fixation, physiology, biomass allocation, and yield of legumes. In: Hasanuzzaman M, Araújo S, Gill S (eds) The Plant Family Fabaceae. Springer, Singapore, pp 503–517

    Chapter  Google Scholar 

  • Rinnan R, Holopainen T (2004) Ozone effects on the ultrastructure of peatland plants: Sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Ann Bot 94(4):623–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts BR (1987) Photosynthetic response of yellow-poplar seedlings to the antioxidant chemical ethylenediurea. J Arboric 13:154–158

    Google Scholar 

  • Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of photosystem II. Photosynth Res 92(3):369–387

    Article  CAS  PubMed  Google Scholar 

  • Salvatori E, Fusaro L, Mereu S, Bernardini A, Puppi G, Manes F (2013) Different O3 response of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.): the key role of growth stage, stomatal conductance, and PSI activity. Environ Exp Bot 87:79–91

    Article  CAS  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216(6):918–928

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Rakwal R, Bhushan Agrawal S, Shibato J, Ogawa Y, Yoshida Y, Kumar Agrawal G, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 9(9):4565–4584

    Article  CAS  PubMed  Google Scholar 

  • Schraudner M, Ernst D, Langebartels C, Sandermann H (1992) Biochemical plant responses to ozone: III. Activation of the defense-related proteins β-1, 3-glucanase and chitinase in tobacco leaves. Plant Physiol 99(4):1321–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra CI, Casalongue CA, Pinedo ML, Ronchi VP, Conde RD (2003) A germin like protein of wheat leaf apoplast inhibits serine proteases. J exp Bot 54(386):1335–1134

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Agrawal SB (2010) Impact of tropospheric ozone on wheat (Triticum aestivum L.) in the eastern Gangetic plains of India as assessed by ethylenediurea (EDU) application during different developmental stages. Agric Ecosyst Environ 138(3-4):214–221

    Article  CAS  Google Scholar 

  • Singh S, Agrawal S, Singh P, Agrawal M (2010) Screening three cultivars of Vigna mungo L. against ozone by application of ethylenediurea (EDU). Ecotoxicol Environ Saf 73:1765–1775

    Article  CAS  PubMed  Google Scholar 

  • Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza L. Plant cell Physiol 41(11):1279–1285

    Article  CAS  PubMed  Google Scholar 

  • The Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. In: Science Policy REPORT 15/08. The Royal Society, London report.

  • Thompson EW, Lane BG (1980) Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J Biol Chem 255(12):5965–5970

    Article  CAS  PubMed  Google Scholar 

  • Tonneijck AEG, Van Dijk CJ (1997) Effects of ambient ozone on injury and yield of Phaseolus vulgaris at four rural sites in the Netherlands as assessed by using ethylenediurea (EDU). New Phytol 135(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Tonneijck AEG, Van Dijk CJ (2002) Injury and growth response of subterranean clover to ambient ozone as assessed by using ethylenediurea (EDU): three years of plant monitoring at four sites in The Netherlands. Environ Exp Bot 48(1):33–41

    Article  CAS  Google Scholar 

  • Torres NL, Cho K, Shibato J, Hirano M, Kubo A, Masuo Y, Iwahashi H, Jwa NS, Agrawal GK, Rakwal R (2007) Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 28(23):4369–4381

    Article  CAS  PubMed  Google Scholar 

  • Tran TA, Vassileva V, Petrov P, Popova LP (2013) Cadmium-induced structural disturbances in Pisum sativum leaves are alleviated by nitric oxide. Turk J Bot 37(4):698–707

    CAS  Google Scholar 

  • Ueda Y, Siddique S, Frei M (2015) A novel gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, enhances cell death in ozone stress in rice. Plant Physiol 169(1):873–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vainonen JP, Kangasjärvi J (2015) Plant signalling in acute ozone exposure. Plant Cell Environ 38(2):240–252

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T et al (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DA (1980) Preparation of higher plant intact chloroplast. Method Enzymol 69:94–105

    Article  CAS  Google Scholar 

  • Wang GJ, Miao W, Wang JY, Ma DR, Li JQ, Chen WF (2013) Effects of exogenous abscisic acid on antioxidant system in weedy and cultivated rice with different chilling sensitivity under chilling stress. J Agron Crop Sci 199(3):200–208

    Article  CAS  Google Scholar 

  • Wang J, Zeng Q, Zhu J, Chen C, Liu G, Tang H (2014) Apoplastic antioxidant enzyme responses to chronic free-air ozone exposure in two different ozone-sensitive wheat cultivars. Plant physiol Biochem 82:183–193

    Article  PubMed  CAS  Google Scholar 

  • Weidensaul TC (1980) N-(2(-2-ozo-l-imidazolidinyl)-ethyl)-N0-phenylurea as a protectant against ozone injury to laboratory fumigated pinto bean plants. Phytopathology 70:42–45

    Article  CAS  Google Scholar 

  • Weimar M, Rothe GM (1987) Preparation of extracts from mature spruce needles for enzymatic analyses. Physiol Plant 69:692–698

    Article  CAS  Google Scholar 

  • Whitaker BD, Lee EH, Rowland RA (1990) EDU and O3 production: foliar glycerolipids and steryl lipids in snap bean exposed to O3. Physiol Plantarum 80:286–293

    Article  CAS  Google Scholar 

  • Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63:527–536

    Article  CAS  PubMed  Google Scholar 

  • Willick IR, Takahashi D, Fowler DB, Uemura M, Tanino KK (2018) Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns. J Exp Bot 69(5):1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Han H, Liu M, Zuo Z, Zhou K, Lü J, Zhu Y, Bai Y, Wang Y (2013) Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tissue Organ Cult 113(3):407–416

    Article  CAS  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-NBRI, for providing the necessary facilities. SKG and MS are grateful to CSIR and UGC, respectively, for senior research fellowship.

Funding

Funding for this work was provided by the Council of Scientific & Industrial Research (CSIR), New Delhi, India (project no. PSC 112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Pandey.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Bhumi Nath Tripathi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Table S1

Meteorological data during different developmental stages on experimental site (DOCX 12 kb)

Table S2

List of differentially expressed apoplast proteins in the leaf of wheat variety Kundan (DOCX 15 kb)

Table S3

List of differentially expressed apoplast proteins in the leaf of wheat variety PBW 343 (DOCX 15 kb)

Table S4

List of differentially expressed chloroplast proteins in the leaf of wheat variety Kundan (DOCX 36 kb)

Table S5

List of differentially expressed chloroplast proteins in the leaf of wheat variety PBW 343 (DOCX 37 kb)

Fig. S1

Schematic illustration of the different steps during the isolation of chloroplasts from wheat leaf (Triticum aestivum L.). After cell disruption, filtration and the different centrifugation step, intact and highly enriched chloroplasts can be isolated from the pellet, using further differential centrifugation and Percoll density gradients (PNG 1952 kb) (PNG 2059 kb)

High Resolution (TIF 8252 kb)

Fig. S2

Glucose-6-Phosphate dehydrogenase enzymatic assay for contamination check in isolated apoplasts (PNG 1035 kb)

High Resolution (TIF 4154 kb)

Fig. S3

Effect of EDU application on chloroplast protein abundance pattern in two wheat (Triticum aestivum L.) cultivars (Kundan and PBW 343). Pie diagram represents the percent increase or decrease and no effects on protein expression. (A. 200ppm EDU in PBW 343; B, 300ppm EDU in PBW 343; C, 200ppm EDU in Kundan; and D, 300ppm EDU in Kundan). (PNG 1952 kb)

High Resolution (TIF 7816 kb)

Fig. S4

Pie chart showing different functional categories among identified proteins in chloroplast in response to two EDU concentrations. (A- Kundan, B- PBW 343) (PNG 3352 kb)

High Resolution (TIF 13421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Sharma, M., Maurya, V.K. et al. Effects of ethylenediurea (EDU) on apoplast and chloroplast proteome in two wheat varieties under high ambient ozone: an approach to investigate EDU’s mode of action. Protoplasma 258, 1009–1028 (2021). https://doi.org/10.1007/s00709-021-01617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01617-1

Keywords

Navigation