Skip to main content

Advertisement

Log in

Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low—0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tissue Org Cult 109(3):391–400

    Article  CAS  Google Scholar 

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383

    Article  Google Scholar 

  • Belz GT, Auchterlonie GJ (1995) An investigation of the use of chromium, platinum and gold coating for scanning electron microscopy of casts of lymphoid tissues. Micron 26(2):141–144

    Article  CAS  PubMed  Google Scholar 

  • Benelli C, Germana MA, Ganino T, Beghe D, Fabbri A (2010) Morphological and anatomical observations of abnormal somatic embryos from anther cultures of Citrus reticulata. Biol Plant 54(2):224–230

    Article  Google Scholar 

  • Bertóková A, Vikartovská A, Bučko M, Gemeiner P, Tkáč J, Chorvát D, Štefuca V, Neděla V (2015) Biooxidation of 2-phenylethanol to phenylacetic acid by whole-cell Gluconobacter oxydans biocatalyst immobilized in polyelectrolyte complex capsules. Biocatal Biotransform 33(2):111–120

    Article  Google Scholar 

  • Bharathy PV, Agrawal DC (2008) High frequency occurrence of single cotyledonary embryo morphotype and repetitive somatic embryogenesis in ‘Thompson Seedless’ crossed with seven grapevine male parents. Vitis 47(3):169–174

    Google Scholar 

  • Businge E, Brackmann K, Moritz T, Egertsdotter U (2012) Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32(2):232–244

    Article  CAS  PubMed  Google Scholar 

  • Businský R (2009) A new concept in bog pine. Zprávy Čes Bot Společ Praha 44:35–43

    Google Scholar 

  • Businský R, Kirschner J (2010) Pinus mugo and P. uncinata as parents of hybrids. A taxonomic and nomenclatural survey. Phyton (Horn, Austria) 50:27–57

    Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K, Parky S, Toribio M, Bonga JM (2009) Plant regeneration in stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tiss Organ Cult 98:165–178

    Article  CAS  Google Scholar 

  • Choudhury H, Kumaria S, Tandon P (2008) Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.). Curr Sci 95:1433–1438

    CAS  Google Scholar 

  • De Diego N, Montalbán IA, Moncaleán P (2010) In vitro regeneration of adult Pinus sylvestris L. trees. S Afr J Bot 76:158–162

    Article  Google Scholar 

  • Fernando J, Melo M, Soares M, Appezzato-da-Glória B (2001) Anatomy of somatic embryogenesis in Carica papaya L. Braz Arch Biol Technol 44(3):247–255

    Article  Google Scholar 

  • Finer J, Kriebel H, Becwar M (1989) Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus). Plant Cell Rep 8:203–206

    Article  CAS  PubMed  Google Scholar 

  • Griga M (2002) Morphology and anatomy of Pisum sativum somatic embryos. Biol Plant 45(2):173–182

    Article  Google Scholar 

  • Grulich V (2012) Red list of vascular plants of the Czech Republic: 3rd edition. Preslia 84:631–645

    Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179

    Article  CAS  PubMed  Google Scholar 

  • Häggman H, Pirttilä AM, Niemi K, Sarjala T, Julkunen-Tiitto R (2009) Medicinal properties, in vitro protocols and secondary metabolite analyses of Scots pine. Methods Mol Biol 547:35–52

    Article  PubMed  Google Scholar 

  • Hargreaves CL, Reeves CB, Find JI, Gough K, Josekutty P, Skudder DB, Van der Maas SA, Sigley MR, Menzies MI, Low CB, Mullin TJ (2009) Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can J For Res 39:1566–1574

    Article  Google Scholar 

  • Hill P, Gutierrez B, Carmack L, Kopp OR (2015) Micropropagation of Astragalus holmgreniorum (Holmgren milkvetch), an endemic and endangered species. Plant Cell Tissue Org Cult 121(2):381–387

    Article  CAS  Google Scholar 

  • Klimaszewska K, Park Y-S, Overton C, Maceacheron J, Bonga J (2001) Optimised somatic embryogenesis in Pinus strobus. In Vitro Cell Dev Biol Plant 37:392–399

    Article  Google Scholar 

  • Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, LeluWalter MA (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell Dev Biol Plant 45:20–33

    Article  Google Scholar 

  • Larsson E, Sitbon F, Ljung K, von Arnold S (2008) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177(2):356–366

    CAS  PubMed  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal production from self-and cross pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Org Cult 92:31–45

    Article  Google Scholar 

  • Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899

    Article  Google Scholar 

  • Li WF, Zhang SG, Han SY, Wu T, Zhang JH, Qi LW (2013) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tissue Org Cult 113(1):131–136

    Article  CAS  Google Scholar 

  • Lukášová M, Businský R, Vejsadová H (2012) Bog pine (Pinus uncinata susbp. uliginosa) protection using morphometric, genetic and micropropagation methods. Acta Pruhoniciana 100:147–153

    Google Scholar 

  • MacKay JJ, Becwar MR, Park YS, Corderro JP, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9

    Article  Google Scholar 

  • Maruyama E, Hosoi Y, Ishii K (2007) Somatic embryogenesis and plant regeneration in yakutanegoyou, Pinus armandii Franch. Var. Amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. In Vitro Cell Dev Biol Plant 43:28–34

    Article  CAS  Google Scholar 

  • Miguel C, Gonçalves S, Tereso S, Marum L, Maroco J, Oliveira M (2004) Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tiss Org Cult 76:121–130

    Article  CAS  Google Scholar 

  • Minocha R, Smith DR, Reeves C, Steele KD, Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164

    Article  CAS  Google Scholar 

  • Montalbán IA, De Diego N, Aguirre Igartua E, Setién A, Moncaleán P (2011) A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants. Plant Biotechnol Rep 5(2):177–186

    Article  Google Scholar 

  • Montalbán IA, De Diego N, Moncaleán P (2012) Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol Plant 34:451–460

    Article  Google Scholar 

  • Montalbán IA, Setién-Olarra A, Hargreaves CL, Moncaleán P (2013) Somatic embryogenesis in Pinus halepensis Mill.: an important ecological species from the Mediterranean forest. Trees 27(5):1339–1351

    Article  Google Scholar 

  • Neděla V, Konvalina I, Lencová B, Zlámal J (2011) Comparison of calculated, simulated and measured signal amplification in variable pressure SEM. Nucl Instrum Methods Phys Res Sect A 645(1):79–83

    Article  Google Scholar 

  • Neděla V, Hřib J, Vooková B (2012) Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol Plant 56:595–598

    Article  Google Scholar 

  • Neděla V, Tihlaříková E, Hřib J (2015) The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc Res Tech 78(1):13–21

    Article  PubMed  Google Scholar 

  • Neděla V, Hřib J, Havel L, Hudec J, Runštuk J (2016) Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope. Micron 84:67–71

    Article  PubMed  Google Scholar 

  • Perullo N, Determann RO, Cruse-Sanders JM, Pullman GS (2015) Seed cryopreservation and micropropagation of the critically endangered species swamp pink (Helonias bullata L.). In Vitro Cell Dev Biol Plant 51(3):284–293

    Article  CAS  Google Scholar 

  • Pullman GS, Chase KM, Skryabina A, Bucalo K (2009) Conifer embryogenic tissue initiation. Improvements by supplementation of medium with D-xylose and D-chiro-inositol. Tree Physiol 29:147–156

    Article  CAS  PubMed  Google Scholar 

  • Ramarosandratana A, Harvengt L, Bouvet A, Calvayrac R, Paques M (2001) Effects of carbohydrate source, polyethylene glycol and gellan gum concentration of embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryo. In Vitro Cell Dev Biol Plant 37(1):29–34

    Article  CAS  Google Scholar 

  • Salaj T, Fráterová L, Cárach M, Salaj J (2014) The effect of culture medium formulation on Pinus nigra somatic embryogenesis. Dendrobiology 71:119–128

    CAS  Google Scholar 

  • Salajová T, Salaj J (1992) Somatic embryogenesis in European black pine (Pinus nigra Arn.). Biol Plant 34(3):213–218

    Article  Google Scholar 

  • Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. J Exp Bot 65:1343–1460

    Article  CAS  PubMed  Google Scholar 

  • Stabentheiner E, Zankel A, Pölt P (2010) Environmental scanning electron microscopy (ESEM)—a versatile tool in studying plants. Protoplasma 246:89–99

    Article  PubMed  Google Scholar 

  • Tihlaříková E, Neděla V, Shiojiri M (2013) In situ study of live specimens in an environmental scanning electron microscope. Microsc Microanal 19(4):914–918

    Article  PubMed  Google Scholar 

  • Tret’yakova IN, Voroshilova EV (2014) Embryo initiation from Pinus sibirica megagametophytes in in vitro culture. Russ J Dev Biol 45(2):93–100

    Article  Google Scholar 

  • Trontin JF, Walter C, Klimaszewska K, Park YS, Lelu-Walter MA (2007) Recent progress in genetic transformation of four Pinus spp. Transgenic Plant J 1:314–329

    Google Scholar 

  • Vejsadová H, Lukášová M (2010) Shoot organogenesis induction from genetically verified individuals of endangered bog pine (Pinus uncinata subsp. uliginosa). J For Sci 56(8):341–347

    Google Scholar 

  • Vejsadová H, Šedivá J (2002) Micropropagation of endangered bog pine species (Pinus rotundata Link). Acta Pruhoniciana 73:37–47 (in Czech)

    Google Scholar 

  • Vejsadová H, Vlašinová H, Havel L (2008) Preservation of a rare bog pine genotype using micropropagation techniques. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis LVI(4):197–206

    Google Scholar 

  • Wang HC, Chen JT, Chang WC (2010) Morphogenetic routes of long-term embryogenic callus culture of Areca catechu. Biol Plant 54(1):1–5

    Article  CAS  Google Scholar 

  • Xie DY, Hong Y (2001) Regeneration of Acacia mangium though somatic embryogenesis. Plant Cell Rep 20:34–40

    Article  CAS  Google Scholar 

  • Zegzouti R, Arnould M-F, Favre J-M (2001) Histological investigation of the multiplication step in secondary somatic embryogenesis of Quercus robur L. Ann For Sci 58:681–690

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of the Environment of the Czech Republic (project no. SP-2d4-83-07) and by the Grant Agency of the Czech Republic (project no. GA14-22777S). The authors are grateful to the company HIROX for making photos with their instruments for comparative visualization of embryo development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Đorđević.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Hanns H. Kassemeyer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlašínová, H., Neděla, V., Đorđević, B. et al. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope. Protoplasma 254, 1487–1497 (2017). https://doi.org/10.1007/s00709-016-1036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1036-1

Keywords

Navigation