Skip to main content
Log in

Ultrastructure of Cosmarium strains (Zygnematophyceae, Streptophyta) collected from various geographic locations shows species-specific differences both at optimal and stress temperatures

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plant species collected from various climatic zones and stressed in vitro at various temperatures reveal changes in cellular ultrastructure which are in accordance with the climate at their sampling sites. This observation initiated the investigation to establish if stress at different temperatures may cause diverse extents of changes in the ultrastructure of microalgal strains originating from different geographic zones. The study revealed that the six Cosmarium strains demonstrated ultrastructural characteristics that were consistent with their source location under optimal, low and high temperature conditions, pointing to their preference to specific climatic niches. Interestingly, chloroplasts of all of the Cosmarium strains correspond to a sun-adapted type, which is concomitant with earlier statements that these strains are rendered as high-light adapted algae. The Cosmarium strains developed multiple ultrastructural responses which enabled them to cope with excessive temperatures, occasionally occurring in desmid natural habitats. The appearance of cubic membranes and increased number of plastoglobules may represent the first line in protection against high-temperature stress, which is accompanied by the alteration of protein synthesis and the appearance of stress granules in order to preserve cell homeostasis. However, the prolonged warm- or cold-temperature stress obviously initiated the programmed cell death, as concluded from the appearance of several ultrastructural features observed in all of the Cosmarium strains. The fair acclimation possibilities and the ability to undergo programmed cell death in order to save the population, certainly favor the cosmopolitan distribution of the genus Cosmarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

HS:

Heat stress

CS:

Chilling stress

ROS:

Reactive oxygen species

HSP:

Heat shock protein

hsgs:

Heat shock granules

PSII:

Photosystem II

rETRmax :

Maximum relative electron transport rate (photosynthetic capacity)

I k :

Saturating irradiance

PCD:

Programmed cell death

References

  • Abdelahad N, Bazzichelli G, D’Archino R (2003) Catalogo delle Desmidiacee (Chorophyta, Zygnematophyceae) segnalate in Italia. A checklist of desmids (Chlorophyta, Zygnematophyceae) reported in Italy. Accad Nazionale delle Sci 11:1–102

    Google Scholar 

  • Affenzeller J, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009a) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954. doi:10.1093/jxb/ern348

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009b) PCD and autophagy in the unicellular green alga Micrasterias denticulata. Autophagy 5:854–855. doi:10.1093/jxb/ern348

  • Agarkar DS (1971) Contribution of the desmids of Givalior Madhya Pradesh (India) II. Phykos 10:54–70

    Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550. doi:10.1007/s11120-008-9331-0

    Article  PubMed  CAS  Google Scholar 

  • Almsherqi ZA, Landh T, Kohlwein SD, Deng Y (2009) Chapter 6: cubic membranes: the missing dimension of cell membrane organization. Int Rev Cell Mol Biol 274:275–342. doi:10.1016/S1937-6448(08)02006-6

    Article  PubMed  CAS  Google Scholar 

  • Alvárez Cobelas M (1984) Catálogo de las algas continentals españolas. III. Zygophyceae Widder 1960. Collect Bot (Barcelona) 15:17–37

    Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136. doi:10.1146/annurev.pp.37.060186.000521

  • Anderson JM, Osmond CB (1987) Shade-sun responses: compromises between acclimation and photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Topics in photosynthesis, vol 9. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol 15:11–26. doi:10.1071/PP9880011

    Article  Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703. doi:10.1105/tpc.105.039859

  • Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655. doi:10.1038/nrmicro956

    Article  PubMed  CAS  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529. doi:10.1111/j.1469-185X.1968.tb00968.x

    Article  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds). Physiological plant ecology I. Responses to the physical environment. Encycl Plant Physiol New Ser, Vol 12A. Springer, Berlin, pp 57–107

  • Bréhélin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry tricks. Photochem Photobiol 84:1388–1394. doi:10.1111/j.1751-1097.2008.00459.x

    Article  PubMed  Google Scholar 

  • Britvec M, Reichenauer T, Soja G, Ljubešić N, Eid M, Pecina M (2001) Ultrastructure changes in grapevine chloroplasts caused by increased tropospheric ozone concentrations. Biologia 56:417–424

    Google Scholar 

  • Brook AJ (1981a) The biology of desmids. Blackwell, Oxford

    Google Scholar 

  • Brook AJ (1981b) Calcium sulphate inclusions in the desmids Bambusina and Gonatozygon. Br Phycol J 16:267–272. doi:10.1080/00071618100650281

  • Brook AJ, Johnson LR (2003) Order Zygnematales. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles, 2nd edn. British Phycological Society, Natural History Museum, Cambridge University Press, Cambridge, pp 479–593

    Google Scholar 

  • Coesel PFM (1996) Biogeography of desmids. Hydrobiologia 336:41–53. doi:10.1007/978-94-017-0908-8_4

    Article  Google Scholar 

  • Coesel PFM, Meesters KJ (2007) Desmids of the lowlands. KNNV, Zeist

    Book  Google Scholar 

  • Coesel PFM, Wardenaar K (1990) Growth responses of planktonic desmid species in a temperature-light gradient. Freshw Biol 23:551–560. doi:10.1111/j.1365-2427.1990.tb00294.x

    Article  Google Scholar 

  • Coesel PFM, Ngearnpat N, Peerapornisal Y (2009) Some new or otherwise interesting desmid taxa from Thailand. Alg Stud 131:15–22. doi:10.1127/1864-1318/2009/0131-0015

    Article  Google Scholar 

  • Compère P (1977) Algues de la région du Lac Tchad VII—chlorophycophytes (3e partie: Desmidiées). Sér Hydrobiol 11:77–177

    Google Scholar 

  • Darehshouri A, Affenzeller M, Lütz-Meindl U (2008) Cell death in the unicellular green alga Micrasterias upon H2O2 induction. Plant Biol (Stuttg) 10:732–745. doi:10.1111/j.1438-8677.2008.00078.x

  • Deng Y, Kohlwein SD, Mannella CA (2002) Fasting induces cyanide-resistant respiration and oxidative stress in the amoeba Chaos carolinensis: implications for the cubic structural transition in mitochondrial membranes. Protoplasma 219:160–167. doi:10.1007/s007090200017

  • Dobberstein B, Kiermayer O (1972) Das Auftreten eines besonderen Typs von Golgivesikeln während der Sekundärwandbildung von Micrasterias denticulata Bréb. Protoplasma 75:185–194. doi:10.1007/BF01279403

  • Eymery F, Rey P (1999) Immunocytolocalization of CDSP32 and CDSP34, two chloroplastic drought-induced stress proteins in Solanum tuberosum plants. Plant Physiol Biochem 37:305–312. doi:10.1016/S0981-9428(99)80029-1

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. BioScience 54:777–784. doi:10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2

  • Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:629–636. doi:10.1007/BF00239374

    Article  Google Scholar 

  • Forde BJ, Whitehead HCM, Rowley JA (1975) Effect of light intensity and temperature on photosynthetic rate, leaf starch content and ultrastructure of Paspalum dilatatum. Aust J Plant Physiol 2:185–195. doi:10.1071/PP9750185

  • Gemel J, Golinowski W, Kaniuga Z (1986) Low-temperature induced changes in chloroplast ultrastructure in relation to changes of Hill reaction activity, manganese and free fatty acid levels in chloroplasts of chilling-sensitive and chilling-resistant plants. Acta Physiol Plant 8:135–143

    CAS  Google Scholar 

  • Goh C-H, Ko S-M, Koh S, Kim Y-J, Bae H-J (2012) Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J Plant Biol 55:93–101

    Article  CAS  Google Scholar 

  • Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353:411–416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine macroalgae. In: Larkum AWD, Douglas SE, Raven JA (eds) Advances in photosynthesis and respiration. Vol. 14. Photosynthesis in algae. Kluwer, Dordrecht, pp 413–435

    Google Scholar 

  • Hepler PK (1981) The structure of the endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26:102–110

    PubMed  CAS  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167. doi:10.1016/0168-9452(94)04047-8

    Article  Google Scholar 

  • Hirano M (1966) Freshwater algae from northeastern part of Afghanistan. Results of the Kyoto University Scientific expedition to the Karakoram and Hindukush 8:15–54

  • Ishikawa HA (1996) Ultrastructural features of chilling injury: injured cells and the early events during chilling of suspension-cultured mung bean cells. Am J Bot 83:825–835

    Article  Google Scholar 

  • John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JML, Rangell L, Bennett MJ, Zha J (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16:1543–1554. doi:10.1091/mbc.E04-08-0697

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Joyce DC, Cramer GR, Reid MS, Bennett AB (1988) Transport properties of the tomato fruit tonoplast. Plant Physiol 88:1097–1103. doi:10.1104/pp.84.4.997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kattner E, Lorch D, Weber A (1977) Die Bausteine der Zellwand und der Gallerte eines Stammes von Netrium digitus (Ehrbg.) Itzigs. & Rothe. Mitt Inst Allg Bot 15:33–39

  • Kiermayer O (1971) Elektronenmikroskopischer Nachweis spezieller cytoplasmatischer Vesikel bei Micrasterias denticulata Bréb. Planta 96:74–80. doi:10.1007/BF00397906

  • Kosakivska I, Klymchik D, Negretzky V, Blumal D, Ustinova A (2008) Stress proteins and ultrastructural characteristics of leaf cells of plants with different types of ecological strategies. Gen Appl Plant Physiol 34:405–418

    CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. doi:10.1046/j.1365-3040.2000.00560.x

    Article  CAS  Google Scholar 

  • Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758. doi:10.1016/j.hal.2008.11.011

    Article  Google Scholar 

  • Landh T (1995) From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett 369:13–17. doi:10.1016/0014-5793(95)00660-2

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2001) Photosynthesis (3rd edition). BIOS Scientific, Oxford

    Google Scholar 

  • Li Q-T, Yeo MH, Tan BK (2000) Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources. Biochem Biophys Res Commun 273:72–76. doi:10.1006/bbrc.2000.2908

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1984) Differences in morphology and chemical composition of leaves grown at different light intensities and qualities. In: Baker NR, Davies WJ, Ong CK (eds) Control of leaf growth. S.E.B. Seminar Series Vol. 27. Cambridge University Press, London, pp 201–221

    Google Scholar 

  • Lichtenthaler HK, Burkart S (1999) Photosynthesis and high light stress. Bulg J Plant Physiol 25:3–16

    CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C, Meier D (1982) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Z Naturforsch 37c:464–475

    CAS  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, New York

    Book  Google Scholar 

  • Locy RD, Chang CC, Nielsen BL, Singh NK (1996) Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol 110:321–328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants (2nd edition). Springer, Berlin

    Google Scholar 

  • Ma SF, Lin CY, Chen YM (1990) Comparative studies of chilling stress on alterations of chloroplast ultrastructure and protein synthesis in the leaves of chilling-sensitive (mungbean) and -insensitive (pea) seedlings. Bot Bull Acad Sin 31:263–272

    Google Scholar 

  • Mayo JM, Hartgerink AP, Despain DG, Thompson RG, van Zinderen Bakker EM, Nelson SD (1987) Gas exchange studies of Carex and Dryas, true lowland. In: Bliss LC (ed) Truelove lowland, Devon Island, Canada. A high Arctic ecosystem. University of Alberta Press, Alberta, pp 265–280

  • McLean RJ, Pessoney GF (1970) A large scale quasi-crystalline lamellar lattice in chloroplasts of the green alga Zygnema. J Cell Biol 45:522–531

  • Meier D, Lichtenthaler HK (1981) Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon. Protoplasma 107:195–207. doi:10.1007/BF01275618

    Article  CAS  Google Scholar 

  • Meindl U (1990) Effects of temperature on cytomorphogenesis and ultrastructure of Micrasterias denticulata Bréb. Protoplasma 157:3–18. doi:10.1007/BF01322635

  • Miroshnichenko S, Tripp J, zur Nieden U, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281. doi:10.1111/j.1365-313X.2004.02290.x

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, del Pozo O, Meisel L, Lam E (1997) Pathogen-induced programmed cell death in plants, a possible defense mechanism. Dev Genet 21:279–289. doi:10.1002/(SICI)1520-6408(1997)

    Article  PubMed  CAS  Google Scholar 

  • Morris GJ, Coulson GE, Engels M (1986) A cryomicroscopic study of Cylindrocystis brebissonii De Bary and two species of Micrasterias Ralfs (Conjugatophyceae, Chlorophyta) during freezing and thawing. J Exp Bot 179:842–856. doi:10.1093/jxb/37.6.842

  • Moss B (1973) The influence of environmental factors on the distribution of freshwater algae: an experimental study. III. Effects of temperature, vitamin requirements and inorganic nitrogen compounds on growth. J Ecol 61:179–192

    Article  CAS  Google Scholar 

  • Mustárdy L, Garab G (2003) Granum revisited. A three-dimensional model—where things fall into place. Trends Plant Sci 8:117–122. doi:10.1016/S1360-1385(03)00015-3

    Article  PubMed  Google Scholar 

  • Neumann D, Scharf KD, Nover L (1984) Heat shock induced changes of plant cell ultrastructure and autoradiographic localization of heat shock proteins. Eur J Cell Biol 34:254–264

    PubMed  CAS  Google Scholar 

  • Nover L, Scharf KD, Neumann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Osmond CB, Austin MP, Berry JA, Billings WD, Boyer JS, Dacey WH, Nobel PS, Smith SD, Winner WE (1987) Stress physiology and the distribution of plants. Bioscience 37:38–48

    Article  Google Scholar 

  • Palamar-Mordvintseva GM (1982) Opredelitelj presnovodnih vodoroslei SSSR. Zelenye vodorosli, klass konjugaty, porjadok desmidievye. Nauka Leningradskoe otdelenie, Leningrad

  • Polverari A, Buonaurio R, Guiderdone S, Pezzotti M, Marte M (2000) Ultrastructural observations and DNA degradation analysis of pepper leaves undergoing a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria. Eur J Plant Pathol 106:423–431. doi:10.1023/A:1008773321809

    Article  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44. doi:10.1146/annurev.pp. 35.060184.000311

    Article  CAS  Google Scholar 

  • Quader H (1985) Tunicamycin prevents cellulose microfibril formation in Oocystis solitaria. Plant Physiol 75:534–538. doi:10.1104/pp.75.3.534

    Article  Google Scholar 

  • Rich F (1935) Contributions to our knowledge of the freshwater algae of Africa. Algae from a pan in southern Rhodesia. Trans R Soc S Africa 23:107–160

    Article  Google Scholar 

  • Rino JA (1972) Contribuição para o conhecimento das algas de água doce de Moçambique III. Revista Ci Biol, Fac Ci Univ Loucenço Marques A5:121–264

    Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the grow and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126. doi:10.1093/jexbot/52.364.2115

    PubMed  CAS  Google Scholar 

  • Selga T, Selga M, Pavila V (2005) Death of mitochondria during programmed cell death of leaf mesophyll cells. Cell Biol Int 29:1050–1056. doi:10.1016/j.cellbi.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277. doi:10.1111/j.1365-3040.2005.01324.x

    Article  CAS  Google Scholar 

  • Shvetsova VM (1970) Temperature dependence of photosynthesis in certain arctic plants. Bot Zh 55:1683–1688

    Google Scholar 

  • Smýkal P, Hrdý I, Pechan PM (2000) High-molecular-mass complexes formed in vivo contains smHSPs and HSP70 and display chaperone-like activity. Eur J Biochem 267:2195–2207. doi:10.1046/j.1432-1327.2000.01223.x

    Article  PubMed  Google Scholar 

  • Soeder C, Müller H, Payer H, Schulle H (1971) Mineral nutrition of planktonic algae: some considerations and experiments. Mitt Int Ver Limnol 19:39–58

    Google Scholar 

  • Spurr AR (1964) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1

    Article  Google Scholar 

  • Stamenković M, Hanelt D (2011) Growth and photosynthetic characteristics of several Cosmarium strains (Zygnematophyceae, Streptophyta) isolated from various geographic regions under a constant light-temperature regime. Aquat Ecol 45:455–472. doi:10.1007/s10452-011-9367-7

    Article  Google Scholar 

  • Stamenković M, Hanelt D (2013a) Adaptation of growth and photosynthesis to certain temperature regimes is an indicator for the geographic distribution of several Cosmarium strains (Zygnematophyceae, Streptophyta). Eur J Phycol 48:116–127. doi:10.1080/09670262.2013.772657

    Article  Google Scholar 

  • Stamenković M, Hanelt D (2013b) Protection strategies of several Cosmarium strains (Zygnematophyceae, Streptophyta) isolated from various geographic regions against excessive photosynthetically active radiation. Photochem Photobiol 89:900–910. doi:10.1111/php.12083

    Article  PubMed  Google Scholar 

  • Stamenković M, Hanelt D (2013c) Xanthophyll cycle pool size and composition in several Cosmarium strains (Zygnematophyceae, Streptophyta) are related to their geographic distribution patterns. Protist 165:14–30. doi:10.1016/j.protis.2013.10.002

    Article  Google Scholar 

  • Starr G, Oberbauer SF, Lorraine EA (2008) The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arct Antarct Alp Res 1:181–191. doi:10.1657/1523-0430(06-015)[STARR]2.0.CO;2

    Article  Google Scholar 

  • Suxena MR (1979) Algae and testacea from high altitudes of Himalayas–I. Hydrobiologia 65:107–128. doi:10.1007/BF00017416

  • Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31:880–888. doi:10.1111/j.0022-3646.1995.00880.x

    Article  Google Scholar 

  • Taylor AO, Craig AS (1971) Plants under climatic stress II. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol 47:719–725. doi:10.1104/pp.47.5.719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teiling E (1952) Evolutionary studies on the shape of the cell, and the chloroplasts in desmids. Bot Notiser 105:264–306

    Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 141:208–219. doi:10.1104/pp.106.078683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van den Hoek C (1982) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. Helgoländer Meeresun 35:153–214. doi:10.1007/BF01997551

    Article  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234. doi:10.1074/jbc.M511939200

    Article  PubMed  CAS  Google Scholar 

  • Vidyavati (1985) Environmental control of cell morphology in desmids. Proc Indian Natl Sci Acad (Plant Sci) 95:193–198

    Google Scholar 

  • Vidyavati SG, Digamber RB, Ramachandra RY (1983) The effect of temperature on certain species of desmids. Phykos 22:147–160

    Google Scholar 

  • Weiß D, Lütz C, Lütz-Meindl U (1999) Photosynthesis and heat response of the green alga Micrasterias denticulata (Desmidiaceae). Z Naturforsch 54:508–516

    Google Scholar 

  • West W, West GS (1895) A contribution to our knowledge of the freshwater algae of Madagascar. Trans Linnean Soc Lond Bot 5:41–90

    Article  Google Scholar 

  • West W, West GS (1904) The British desmidiaceae, vol I. Ray Society, London

    Google Scholar 

  • Wiencke C (1996) Recent advances in the investigation of Antarctic macroalgae. Polar Biol 16:231–240. doi:10.1007/s003000050049

    Article  Google Scholar 

  • Williamson DB (1994) A contribution to knowledge of the desmid flora of South Africa and the adjoining states of Ciskei and Swaziland. Arch Hydrobiol Suppl 99:415–487

    Google Scholar 

  • Williamson DB (2004) Some desmids from southern Chile. Alg Studies 112:105–121. doi:10.1127/1864-1318/2004/0112-0105

    Article  Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97. doi:10.1007/BF00032579

    Article  PubMed  CAS  Google Scholar 

  • Wise RR, McWilliam J, Naylor AW (1983) A comparative study of low-temperature-induced ultrastructural alterations of three species with differing chilling sensitivities. Plant Cell Environ 6:525–535. doi:10.1111/j.1365-3040.1983.tb01165.x

    Article  Google Scholar 

  • Wookey PA, Robinson CH, Parsons AN, Welker JM, Press MC, Callaghan TV, Lee JA (1995) Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high Arctic polar semi-desert, Svalbard. Oecologia 102:478–489. doi:10.1007/BF00341360

    Article  Google Scholar 

  • Xu S, Li JL, Zhang XQ, Wei H, Cui LJ (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285. doi:10.1016/j.envexpbot.2005.03.002

    Article  CAS  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478. doi:10.1111/j.1399-3054.2007.01036.x

    Article  PubMed  CAS  Google Scholar 

  • Yun JG, Hayashi T, Yazawa S, Katoh T, Yasuda Y (1996) Acute morphological changes of palisade cells of Saintpaulia leaves induced by a rapid temperature drop. J Plant Res 109:339–342. doi:10.1007/BF02344482

    Article  Google Scholar 

  • Zhang R, Wise RR, Struck RK, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105:123–134. doi:10.1007/s11120-010-9572-6

    Article  PubMed  CAS  Google Scholar 

  • Zuppini A, Bugno V, Baldan B (2006) Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells. Funct Plant Biol 33:617–627. doi:10.1071/FP06015

    Article  CAS  Google Scholar 

  • Zuppini A, Andreoli C, Baldan B (2007) Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol 48:1000–1009. doi:10.1093/pcp/pcm070

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Deutscher Akademischer Austausch Dienst (DAAD) foundation is acknowledged for providing a Ph.D. research grant to M.S.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Stamenković.

Additional information

Handling Editor: Andreas Holzinger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamenković, M., Woelken, E. & Hanelt, D. Ultrastructure of Cosmarium strains (Zygnematophyceae, Streptophyta) collected from various geographic locations shows species-specific differences both at optimal and stress temperatures. Protoplasma 251, 1491–1509 (2014). https://doi.org/10.1007/s00709-014-0652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0652-x

Keywords

Navigation