Skip to main content
Log in

Light-temperature interactions on the growth of Antarctic diatoms

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

The combined effect of various temperatures and light intensities on the growth of seven species of antarctic diatoms in culture has been studied. With the exception of Chaetoceros deflandrei whose thermal tolerance is fairly good, these obligatory psychrophils cannot survive in temperatures above 6° to 9° C. Their mean growth rate is relatively low, between 0.24 div d−1 for Corethron criophilum and 0.63 div d−1 for C. deflandrei. Regardless of light intensity, growth rate increased with the temperature to reach a maximum between 3° and 5° C. The highest rates were obtained between 115 and 220 μmol m−2 s−1 with 0.38 div d−1 for C. criophilum, 0.56 div d−1 for Synedra sp. and between 0.71 and 0.88 div d−1 for the other 5 species. A reduction in light intensity from 220 to 46 μmol m−2 s−1 slowed growth by nearly 50%. These results suggest that the combined effect of temperature and light is one of the factors involved in the limitation of antarctic phytoplankton growth. The low temperatures of the environment do not permit rapid growth, which, even under optimal light conditions remains low. In addition, in the euphotic layer, the overall light energy available for algae is considerably reduced due to turbulence, a factor which exacerbates the reduced growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow RG (1984) Physiological responses of phytoplankton to turbulent and stable environments in an upwelling region. J Plankton Res 6:385–397

    Google Scholar 

  • Bodungen B von, Tilzer MM, Lutjeharms JRE (1981) Observations on the nutrients, chlorophyll and primary production of the Southern Ocean south of Africa. S Afr Antarct Res 10:3–14

    Google Scholar 

  • Clemons MJ, Miller CB (1984) Blooms of large diatoms in the oceanic, subarctic Pacific. Deep-Sea Res 31:85–95

    Article  Google Scholar 

  • Descolas-Gros C, De Billy G (1987) Temperature adaptation of RuBP carboxylase kinetic properties in marine antarctic diatoms. J Exp Mar Biol Ecol 108:147–158

    CAS  Google Scholar 

  • Descolas-Gros C, Fontugne MR (1985) Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Mar Biol 87:1–6

    Article  CAS  Google Scholar 

  • El-Sayed SZ, Taguchi S (1981) Primary production and standing crop of phytoplankton along the ice-edge in Weddell Sea. Deep-Sea Res 28A:1017–1032

    Article  CAS  Google Scholar 

  • El-Sayed SZ, Weber LH (1982) Spatial and temporal variations in phytoplankton biomass and primary productivity in the Southwest Atlantic and the Scotia Sea. Polar Biol 1:83–90

    Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Falkowski PG (1980) Light-shade adaptation in marine phytoplankton. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Press, New York pp, 99–119

    Google Scholar 

  • Falkowski PG, Owens TG (1980) Light-shade adaptation. Two strategies in marine phytoplankton. Plant Physiol 66:592–595

    Google Scholar 

  • Falkowski PG, Wirick CD (1981) A simulation model of the effects of vertical mixing on primary productivity. Mar Biol 65:69–75

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30:311–321

    CAS  Google Scholar 

  • Fawley MW (1984) Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 20:67–72

    Article  Google Scholar 

  • Fontugne M, Fiala M (1987) Caractéristiques biologiques, chimiques et sédimentologiques du secteur Indien de l'Océan Austral (Plateau de Kerguelen). Rapp Camp Mer, TAAF 84-01:345 pp

  • Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods and growth measurements. University Press, Cambridge, pp 289–320

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Husted and Detonula confervacae (Cleve). Can J Microbiol 8:229–239

    CAS  PubMed  Google Scholar 

  • Hasle GR (1976) The biogeography of some marine planktonic diatoms. Deep-Sea Res 23:319–338

    Google Scholar 

  • Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20° and 70° W. Polar Biol 3:153–165

    Article  CAS  Google Scholar 

  • Hitchcock GL (1980) Influence of temperature on the growth rate of Skeletonema costatum in response to variations in daily light intensity. Mar Biol 57:261–269

    Google Scholar 

  • Hobson LA (1974) Effects of interactions of irradiance, daylength and temperature on division rates of three species of marine unicellular algae. J Fish Res Board Can 31:391–395

    Google Scholar 

  • Hoepffner N (1984) Stratégies d'adaptation photosynthétique chez les diatomées de l'Océan Antarctique: variations du nombre et de la taille des unités photosynthétiques. J Plankton Res 6:881–895

    Google Scholar 

  • Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: LLano GA (ed) Adaptations within antarctic ecosystem. Smithsonian Institution, Washington, pp 11–50

    Google Scholar 

  • Jacques G (1982) Présentation de la mission MD 21/Antiprod II. Production pélagique dans le sud de l'Océan Indien (mars 1980). CNFRA 53:7–29

    Google Scholar 

  • Jacques G (1983) Some ecological aspects of the antarctic phytoplankton. Polar Biol 2:27–33

    Article  Google Scholar 

  • Jacques G (1989) Primary production in the open Antarctic Sea during the austral summer. A review. Vie Milieu 39:1–17

    Google Scholar 

  • Jacques G, Minas M (1981) Production primaire dans le secteur indien de l'Océan Antarctique en fin d'été. Oceanol Acta 4:33–41

    Google Scholar 

  • Jacques G, Fiala M, Oriol L (1984) Demonstration á partir de tests biologiques de l'effect négligeable des éléments-traces sur la croissance du phytoplancton antarctique. C-R Acad Sci Paris 298:527–530

    CAS  Google Scholar 

  • Le Corre P, Minas HJ (1983) Distribution et évolution des éléments nutritifs dans le secteur indien de l'Océan Antarctique en fin de période estivale. Oceanol Acta 6:365–381

    Google Scholar 

  • Le Jehan S, Treguer P (1983) Uptake and regeneration ΔSi/ΔN/ΔP ratios in the indian sector of the Southern Ocean. Originality of the biological cycle of silicon. Polar Biol 2:127–136

    Article  Google Scholar 

  • Li WKW (1980) Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics. In: Falkowski P (ed) Primary production in the sea. Plenum Press, New York, pp 259–279

    Google Scholar 

  • Marra J (1978) Effect of short-term variations in light intensity on photosynthesis of a marine phytoplankter: a laboratory simulation study. Mar Biol 46:191–202

    CAS  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    CAS  Google Scholar 

  • Martin JH, Gordon RM (1988) Northeast Pacific iron distribution in relation to phytoplankton productivity. Deep-sea Res 35:177–196

    Article  CAS  Google Scholar 

  • Mortain-Bertrand A (1988) Photosynthetic metabolism of an antarctic diatom and its physiological responses to fluctuation of light. Polar Biol 9:53–60

    Article  Google Scholar 

  • Mortain-Bertrand A (1989) Effects of light fluctuations on growth and productivity of antarctic diatoms in culture. Polar Biol 9:245–252

    Article  Google Scholar 

  • Neori A, Holm-Hansen O (1982) Effect of temperature on rate of photosynthesis in antarctic phytoplankton. Polar Biol 1:33–38

    Article  CAS  Google Scholar 

  • Panouse M (1987) Pénétration de la lumiére et production primaire dans le secteur indien de l'Océan Antarctique (Campagne Apsara II-Antiprod III, 1984). Rapp Camp Mer, TAAF 84–01:104–121

    Google Scholar 

  • Priddle J, Hawes I, Ellis-Evans JC (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Google Scholar 

  • Ribier J, Patillon M, Falxa MJ, Godineau JC (1988) The antarctic diatom: Stellarima microtrias (Ehrenberg) Hasle & Sims. Cell structure and vegetative cell enlargement in culture. Polar Biol 8:447–455

    Article  Google Scholar 

  • Saijo Y, Kawashima T (1964) Primary production in the Antarctic Ocean. J Oceanogr Soc Jpn 19:22–28

    Google Scholar 

  • Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production in polar oceans. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin Heidelberg, pp 1–17

    Google Scholar 

  • Sakshaug E, Holm-Hansen O (1986) Photoadaptation in antarctic phytoplankton: variations in growth rate, chemical composition and P versus I curves. J Plankton Res 8:459–473

    Google Scholar 

  • Simon V (1986) Le système assimilation-régénération des sels nutritifs dans les eaux superficielles de l'Océan Austral. Mar Biol 92:431–442

    Article  CAS  Google Scholar 

  • Smayda TJ (1969) Experimental observations on the influence of temperature, light and salinity on cell division of the marine diatom Detonula confervacea (Cleve) Gran. J Phycol 5:150–157

    Google Scholar 

  • Smith AE, Morris I (1980) Pathways of carbon assimilation in phytoplankton from Antarctic Ocean. Limnol Oceanogr 25:865–872

    CAS  Google Scholar 

  • Sommer U (1989) Maximal growth rates of Antarctic phytoplankton: Only weak dependence on cell size. Limnol Oceanogr 34:1109–1112

    Google Scholar 

  • Spies A (1987) Growth rate of antarctic marine phytoplankton in the Weddell Sea. Mar Ecol Prog Ser 41:267–274

    Google Scholar 

  • Theriot E, Fryxell G (1985) Multivariate statistical analysis of net diatoms species distributions in the Southwestern Atlantic and Indian Ocean. Polar Biol 5:23–30

    Article  Google Scholar 

  • Tilzer MM, Dubinskyz (1987) Effects of temperature and day length of the mass balance of antarctic phytoplankton. Polar Biol 7:35–42

    Article  Google Scholar 

  • Tilzer MM, Bodungen B von, Smetacek V (1985) Light-dependance of phytoplankton photosynthesis in the Antarctic Ocean: Implications for regulating productivity. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg, pp 60–69

    Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in antarctic phytoplankton. Polar Biol 5:105–111

    Article  Google Scholar 

  • Yolder JA (1979) Effect of temperature on light-limited growth and chemical composition of Skeletonema costatum (Bacillariophyceae). J Phycol 15:362–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiala, M., Oriol, L. Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10, 629–636 (1990). https://doi.org/10.1007/BF00239374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239374

Keywords

Navigation