Skip to main content
Log in

Fluorescence lifetime imaging microscopy in the medical sciences

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The steady improvement in the imaging of cellular processes in living tissue over the last 10–15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Förster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad MFC, Di Benedetto G, Magalhães PJ, Filippin L, Pozzan T (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529

    CAS  PubMed  Google Scholar 

  • Agronskaia AV, Tertoolen L, Gerritsen HC (2003) High frame rate fluorescence lifetime imaging. J Phys Appl Phys 36:1655–1662

    Google Scholar 

  • Ai H, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5:401–403

    CAS  PubMed  Google Scholar 

  • Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    PubMed Central  PubMed  Google Scholar 

  • Akrap N, Seidel T, Barisas BG (2010) Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. Anal Biochem 402:105–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballew RM, Demas JN (1991) Error analysis of the rapid lifetime determination method for single exponential decays with a non-zero baseline. Anal Chim Acta 245:121–127

    CAS  Google Scholar 

  • Ballew RM, Demas JN (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal Chem 61:30–33

    CAS  Google Scholar 

  • Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52

    CAS  PubMed  Google Scholar 

  • Becker W (2012) Fluorescence lifetime imaging — techniques and applications. J Microsc 247:119–136

    CAS  PubMed  Google Scholar 

  • Becker W, Bergmann A, Biscotti G, Koenig K, Riemann I, Kelbauskas L, Biskup C (2004) High-speed FLIM data acquisition by time-correlated single-photon counting. Biomed. Opt. 27–35

  • Becker W, Su B, Bergmann A (2009) Fast-acquisition multispectral FLIM by parallel TCSPC. SPIE Proc 7183:718305–718305, 5

    Google Scholar 

  • Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bindewald A (2005) Lower limits of fluorescein and indocyanine green dye for digital cSLO fluorescence angiography. Br J Ophthalmol 89:1609–1615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchez MP (2011) Quantum dots find their stride in single molecule tracking. Curr Opin Chem Biol 15:775–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA (2005) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    PubMed  Google Scholar 

  • Bunt G, Wouters FS (2004) Visualization of molecular activities inside living cells with fluorescent labels. Int Rev Cytol 237:205–277

    CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  PubMed  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  PubMed  Google Scholar 

  • Chance B (1976) Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ Res 38:I31–I38

    CAS  PubMed  Google Scholar 

  • Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771

    CAS  PubMed  Google Scholar 

  • Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832

    CAS  Google Scholar 

  • Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71:528–541

    CAS  PubMed  Google Scholar 

  • Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110

    CAS  PubMed  Google Scholar 

  • Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, Dayel MJ, Parsons-Karavassilis D, French PMW, Lever MJ, Sucharov LOD (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257

    CAS  PubMed  Google Scholar 

  • Colyer RA, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71:201–213

    PubMed  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    CAS  PubMed  Google Scholar 

  • Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li W-P, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci 104:13666–13671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ (1995) In vivo measurement of lipofuscin in Stargardt’s disease–fundus flavimaculatus. Invest Ophthalmol Vis Sci 36:2327–2331

    CAS  PubMed  Google Scholar 

  • Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dimitrow E, Riemann I, Ehlers A, Koehler MJ, Norgauer J, Elsner P, König K, Kaatz M (2009) Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol 18:509–515

    PubMed  Google Scholar 

  • Don Paul C, Kiss C, Traore DAK, Gong L, Wilce MCJ, Devenish RJ, Bradbury A, Prescott M (2013) Phanta: a non-fluorescent photochromic acceptor for pcFRET. PLoS ONE 8:e75835

    PubMed Central  PubMed  Google Scholar 

  • Don Paul C, Traore DAK, Byres E, Rossjohn J, Devenish RJ, Kiss C, Bradbury A, Wilce MCJ, Prescott M (2011) Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties. Acta Crystallograph Sect F Struct Biol Cryst Commun 67:1266–1268

    CAS  Google Scholar 

  • Dowling K, Hyde SCW, Dainty JC, French PMW, Hares JD (1997) 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt Commun 135:27–31

    CAS  Google Scholar 

  • Drezerk R, Brookner C, Pavlova I, Boiko I, Malpica A, Lotan R, Follen M, Richards-Kortum R (2001) Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem Photobiol 73:636–641

    Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  PubMed  Google Scholar 

  • Dymoke-Bradshaw AKL (1993) Impact of high-voltage pulse technology on high-speed photography. Proc SPIE 1757:2–6

    CAS  Google Scholar 

  • Einbock W, Moessner A, Schnurrbusch UEK, Holz FG, Wolf S, for the FAM Study Group (2004) Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study. Graefes Arch Clin Exp Ophthalmol 243:300–305

    PubMed  Google Scholar 

  • Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86

    CAS  PubMed  Google Scholar 

  • Elson D, Requejo-Isidro J, Munro I, Reavell F, Siegel J, Suhling K, Tadrous P, Benninger R, Lanigan P, McGinty J (2004) Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci 3:795–801

    CAS  PubMed  Google Scholar 

  • Elson DS, Jo JA, Marcu L (2007) Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens. New J Phys 9:127– 127

    Google Scholar 

  • Esposito A, Dohm CP, Bähr M, Wouters FS (2007) Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening. Mol Amp Cell Proteomics 6:1446–1454

    CAS  Google Scholar 

  • Esposito A, Oggier T, Gerritsen H, Lustenberger F, Wouters F (2005) All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing. Opt Express 13:9812–9821

    CAS  PubMed  Google Scholar 

  • Esposito A, Wouters FS (2004) Fluorescence lifetime imaging microscopy. Curr Protoc Cell Biol Editor Board Juan Bonifacino Al Chapter 4:Unit 4.14

  • Faltin B, Zengerle R, von Stetten F (2013) Current methods for fluorescence-based universal sequence-dependent detection of nucleic acids in homogenous assays and clinical applications. Clin Chem 59:1567–1582

    CAS  PubMed  Google Scholar 

  • Fatakdawala H, Poti S, Zhou F, Sun Y, Bec J, Liu J, Yankelevich DR, Tinling SP, Gandour-Edwards RF, Farwell DG, Marcu L (2013) Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques. Biomed Opt Express 4:1724–1741

    PubMed Central  PubMed  Google Scholar 

  • Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783–791

    CAS  PubMed  Google Scholar 

  • Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10:2350–2353

    CAS  PubMed  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75

    Google Scholar 

  • Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11:94

    CAS  PubMed  Google Scholar 

  • Freund I, Deutsch M, Sprecher A (1986) Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J 50:693–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganesan S, Ameer-Beg SM, Ng TT, Vojnovic B, Wouters FS (2006) A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Proc Natl Acad Sci U S A 103:4089–4094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill R, Le Ru EC (2011) Fluorescence enhancement at hot-spots: the case of Ag nanoparticle aggregates. Phys Chem Chem Phys 13:16366

    CAS  PubMed  Google Scholar 

  • Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93 %. Nat Commun 3:751

    PubMed Central  PubMed  Google Scholar 

  • Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    CAS  PubMed  Google Scholar 

  • Gussin HA, Tomlinson ID, Little DM, Warnement MR, Qian H, Rosenthal SJ, Pepperberg DR (2006) Binding of muscimol-conjugated quantum sots to GABA C receptors. J Am Chem Soc 128:15701–15713

    CAS  PubMed Central  PubMed  Google Scholar 

  • He L, Wu X, Simone J, Hewgill D, Lipsky PE (2005) Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP- > YFP- > mRFP FRET detected by flow cytometry. Nucleic Acids Res 33:e61–e61

    PubMed Central  PubMed  Google Scholar 

  • Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632

    CAS  PubMed  Google Scholar 

  • Kantelhardt SR, Leppert J, Krajewski J, Petkus N, Reusche E, Tronnier VM, Hüttmann G, Giese A (2007) Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo. Neuro-Oncol 9:103–112

    PubMed Central  PubMed  Google Scholar 

  • Katsoulidou V, Bergmann A, Becker W (2007) How fast can TCSPC FLIM be made? Proc SPIE 6771:67710B-1–67710B-7

    Google Scholar 

  • Kikuchi A, Fukumura E, Karasawa S, Mizuno H, Miyawaki A, Shiro Y (2008) Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira orange. Biochem 47:11573–11580

    CAS  Google Scholar 

  • König K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:432

    PubMed  Google Scholar 

  • König K, Uchugonova A, Gorjup E (2011) Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc Res Tech 74:9–17

    PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  • Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci 89:1271–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange R, Seitz P, Biber A, Schwarte R (1999) Time-of-flight range imaging with a custom solid state image sensor. Proc SPIE 1823:180–191

    Google Scholar 

  • Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci 95:6803–6808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandal G, Darragh M, Wang YA, Heyes CD (2013) Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells. Chem Commun 49:624

    CAS  Google Scholar 

  • Markwardt ML, Kremers G-J, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PloS One 6:e17896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    CAS  PubMed  Google Scholar 

  • McNamara G, Boswell CA (2008) A thousand proteins of light: 15 years of advances in fluorescent proteins. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, p 287

    Google Scholar 

  • Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    PubMed  Google Scholar 

  • Mitchell GP, Mirkin CA, Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121:8122–8123

    CAS  Google Scholar 

  • Mitra RD, Silva CM, Youvan DC (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173:13–17

    CAS  PubMed  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    CAS  PubMed  Google Scholar 

  • Nakashima N, Yoshihara K, Tanaka F, Yagi K (1980) Picosecond fluorescence lifetime of the coenzyme of d-amino acid oxidase. J Biol Chem 255:5261–5263

    CAS  PubMed  Google Scholar 

  • Nann T (2005) Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun 2005:1735–1736

    Google Scholar 

  • O’Connor DV (1984) Time-correlated single photon counting. Academic Press, London

    Google Scholar 

  • Oggier T, Lehmann M, Kaufmann R, Schweizer M, Richter M, Metzler P, Lang G, Lustenberger F, Blanc N (2004) An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth resolution (SwissRanger). Proc SPIE 5249:534–545

    Google Scholar 

  • Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel C, Williams SC, Seitz M, Bruehl RE, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14:2113–2119

    CAS  Google Scholar 

  • Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25

    CAS  PubMed  Google Scholar 

  • Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284:438–440

    CAS  PubMed  Google Scholar 

  • Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2005) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    PubMed  Google Scholar 

  • Pellegrino T, Parak WJ, Boudreau R, Gerion D, Alivisatos AP, Larabell CA (2003) Quantum dot-based cell motility assay. Differentiation 71:542–548

    PubMed  Google Scholar 

  • Petchprayoon C, Marriott G (2010) Synthesis and spectroscopic characterization of red-shifted spironaphthoxazine based optical switch probes. Tetrahedron Lett 51:6753–5755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pettikiriarachchi A, Gong L, Perugini MA, Devenish RJ, Prescott M (2012) Ultramarine, a chromoprotein acceptor for Förster resonance energy transfer. PLoS ONE 7:e41028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, Mattoussi H (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett 7:3157–3164

    CAS  PubMed  Google Scholar 

  • Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) Cadmium-free CuInS 2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4:2531–2538

    CAS  PubMed  Google Scholar 

  • Ramanujam N, Richards-Kortum R, Thomsen S, Mahadevan-Jansen A, Follen M, Chance B (2001) Low temperature fluorescence imaging of freeze-trapped human cervical tissues. Opt Express 8:335–343

    CAS  PubMed  Google Scholar 

  • Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815

    CAS  PubMed  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    CAS  PubMed  Google Scholar 

  • Rowley MI, Barber PR, Coolen ACC, Vojnovic B (2011) Bayesian analysis of fluorescence lifetime imaging data. pp 790325–790325–12

  • Sanchez WY, Prow TW, Sanchez WH, Grice JE, Roberts MS (2010) Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt 15:046008

    PubMed  Google Scholar 

  • Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S, Birckner E, Becker W, Bergmann A (2007) Towards metabolic mapping of the human retina. Microsc Res Tech 70:410–419

    CAS  PubMed  Google Scholar 

  • Scully AD, MacRobert AJ, Botchway S, O’Neill P, Parker AW, Ostler RB, Phillips D (1996) Development of a laser-based fluorescence microscope with subnanosecond time resolution. J Fluoresc 6:119–125

    CAS  PubMed  Google Scholar 

  • Scully AD, Ostler RB, Phillips D, O’Neill P, Townsend KMS, Parker AW, MacRobert AJ (1997) Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms. Bioimaging 5:9–18

    Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    CAS  PubMed  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  PubMed  Google Scholar 

  • Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci 104:19494–19499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straub M, Hell SW (1998) Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope. Appl Phys Lett 73:1769

    CAS  Google Scholar 

  • Subach FV, Zhang L, Gadella TWJ, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17:745–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Phipps J, Elson DS, Stoy H, Tinling S, Meier J, Poirier B, Chuang FS, Farwell DG, Marcu L (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34:2081–2083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescent probes for bioimaging. Pflüg Arch - Eur J Physiol 465:347–359

    CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  • van Munster EB, Gadella TWJ (2005) Fluorescence lifetime imaging microscopy (FLIM). In: Rietdorf J (ed) Microscopy Techniques. Springer, Berlin, pp 143–175

    Google Scholar 

  • Vegh RB, Solntsev KM, Kuimova MK, Cho S, Liang Y, Loo BLW, Tolbert LM, Bommarius AS (2011) Reactive oxygen species in photochemistry of the red fluorescent protein “Killer Red. Chem Commun 47:4887

    CAS  Google Scholar 

  • von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412

    Google Scholar 

  • von Rückmann A, Fitzke FW, Fan J, Halfyard A, Bird AC (2002) Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 133:780–786

    Google Scholar 

  • Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10:62–66

    CAS  PubMed  Google Scholar 

  • Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10:441–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Xu Y, Zhao X, Chang Y, Liu Y, Jiang L, Sharma J, Seo D-K, Yan H (2007) A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J Am Chem Soc 129:6380–6381

    CAS  PubMed  Google Scholar 

  • Wang XF, Periasamy A, Herman B, Coleman DM (1992) Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications. Crit Rev Anal Chem 23:369–395

    CAS  Google Scholar 

  • Wang XF, Uchida T, Coleman DM, Minami S (1991) A two-dimensional fluorescence lifetime imaging system using a gated image intensifier. Appl Spectrosc 45:360–366

    CAS  Google Scholar 

  • Webb SED, Gu Y, Lévêque-Fort S, Siegel J, Cole MJ, Dowling K, Jones R, French PMW, Neil MAA, Juškaitis R, Sucharov LOD, Wilson T, Lever MJ (2002) A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning. Rev Sci Instrum 73:1898

    CAS  Google Scholar 

  • Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    CAS  PubMed  Google Scholar 

  • Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    CAS  PubMed  Google Scholar 

  • Zhang W, Zhou Y, Becker DF (2004) Regulation of PutA–membrane associations by flavin adenine dinucleotide reduction. Biochem 43:13165–13174

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Don Paul.

Additional information

Handling Editor: J. W. Borst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrecht, R., Don Paul, C. & Wouters, F.S. Fluorescence lifetime imaging microscopy in the medical sciences. Protoplasma 251, 293–305 (2014). https://doi.org/10.1007/s00709-013-0598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0598-4

Keywords

Navigation