Skip to main content
Log in

Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Ionic liquids have gained more attention due to their excellent properties in many different scientific fields. However, previous researches indicated that ionic liquids have adverse effects on organisms. The objective of this study was to evaluate the effects of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on the aquatic plant duckweed (Lemna minor) by exposure of the plant to 0.25 to 2 mg L−1 of [C8mim]Br for 28 days. Exposure to [C8mim]Br significantly decreased the photosynthetic pigment contents at 21 and 28 days. The activities of superoxide dismutase and catalase and the total antioxidant capacity level increased at 7 days of exposure and decreased at the termination of exposure. In contrast, the H2O2 content and peroxidase activity in all treatments increased during the period of exposure. Furthermore, marked increase of malondialdehyde content occurred in duckweed after 21 to 28 days of exposure. In addition, reactive oxygen species (ROS) scavenger dimethyl thiourea prevents duckweed from oxidative damage caused by [C8mim]Br. These results suggest that ROS might be involved in the mechanism of ionic liquid-induced toxicity in L. minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali A, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohashi N (ed) The lutein-prevention and treatment for diseases. Transworld Research Network, India, pp 187–256

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci India 82:1227–1238

    CAS  Google Scholar 

  • Babu TS, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon DG, Greenberg BM (2003) Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329

    Article  PubMed  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  • Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005a) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87–92

    Article  PubMed  CAS  Google Scholar 

  • Bernot RJ, Kennedy EE, Lamberti GA (2005b) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24:1759–1765

    Article  PubMed  CAS  Google Scholar 

  • Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot-London 91:179–194

    Article  CAS  Google Scholar 

  • Bonhôte P, Dias AP, Papageorgiou N (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chance B, And AC (1955) Assay of catalases and peroxidases. Method Enzymol 2:764–775

    Article  Google Scholar 

  • Cho C, Jeon Y, Pham TPT, Vijayaraghavan K, Yun Y (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171

    Article  PubMed  CAS  Google Scholar 

  • Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637

    Article  PubMed  CAS  Google Scholar 

  • Costello DM, Brown LM, Lamberti GA (2009) Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem 11:548–553

    Article  CAS  Google Scholar 

  • Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90

    Article  CAS  Google Scholar 

  • Docherty KM, Kulpa JCF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic-Amsterdam 114:5–10

    Article  CAS  Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  PubMed  CAS  Google Scholar 

  • Feng R, He W, Ochi H (2001) A new murine oxidative stress model associated with senescence. Mech Ageing Dev 122:547–559

    Article  PubMed  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Hassan H, Fridivich I (1978) Superoxide radical and the oxygen enhancement of the toxicity of paraquat in Escherichia coli. J Biol Chem 253:8143–8148

    PubMed  CAS  Google Scholar 

  • Huang G, Wang Y (2010) Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. J Hazard Mater 182:848–854

    Article  PubMed  CAS  Google Scholar 

  • ISO (2006) Determination of the toxic effect of water constituents and wastewater on duckweed (Lemna minor)—duckweed growth inhibition test, ISO norm 20079

  • Jastorff B, Molter K, Behrend P, Bottin-Weber U, Filser J, Heimers A, Ondruschka B, Ranke J, Schaefer M, Schroder H, Stark A, Stepnowski P, Stock F, Stormann R, Stolte S, Welz-Biermann U, Ziegert S, Thoming J (2005) Progress in evaluation of risk potential of ionic liquids—basis for an eco-design of sustainable products. Green Chem 7:362–372

    Article  CAS  Google Scholar 

  • Jiang J, Gu X, Song R, Zhang Q, Geng J, Wang X, Yang L (2011) Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology 20:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12

    Article  CAS  Google Scholar 

  • Kumar M, Trivedi N, Reddy CRK, Jha B (2011) Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage. Chem Res Toxicol 24:1882–1890

    Article  PubMed  CAS  Google Scholar 

  • Larson JH, Frost PC, Lamberti GA (2008) Variable toxicity of ionic liquid-forming chemicals to Lemna minor and the influence of dissolved organic matter. Environ Toxicol Chem 27:676–681

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhou J, Yu M, Wang J, Pei YC (2009) Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata. Ecotoxicol Environ Saf 72:552–556

    Article  PubMed  CAS  Google Scholar 

  • Li X, Luo Y, Yun M, Wang J, Wang J (2010) Effects of 1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm. Chemosphere 78:853–858

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zeng S, Dong X, Ma J, Wang J (2011) Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish. Ecotoxicology 21:253–259

    Article  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu P, Ding Y, Liu H, Sun L, Li X, Wang J (2010) Toxic effects of 1-methyl-3-octylimidazolium bromide on the wheat seedlings. J Environ Sci 22:1974–1979

    Article  CAS  Google Scholar 

  • Luo Y, Li X, Chen X, Zhang B, Sun Z, Wang J (2008) The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736–744

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Wang S, Yun M, Li X, Wang J, Sun Z (2009) The toxic effects of ionic liquids on the activities of acetylcholinesterase and cellulase in earthworms. Chemosphere 77:313–318

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Cai L, Zhang B, Hu L, Li X, Wang J (2010) Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol Environ Saf 73:1465–1469

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Mihaylova I, Leunis JC (2006) Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuroendocrinol Lett 27:615–621

    PubMed  CAS  Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci India 82:525–532

    CAS  Google Scholar 

  • Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207

    Article  CAS  Google Scholar 

  • Mishra S, Patro L, Mohapatra P, Biswal B (2008) Response of senescing rice leaves to flooding stress. Photosynthetica 46:315–317

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • OECD (2006) OECD guidelines for the testing of chemicals, revised proposal for a new guideline 221, Lemna sp. Growth inhibition test. OECD, Paris

    Book  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45

    Article  PubMed  CAS  Google Scholar 

  • Patterson B, MacRae E, Ferguson I (1984) Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem 139:487–492

    Article  PubMed  CAS  Google Scholar 

  • Petkovic M, Ferguson JL, Nimal Gunaratne HQ, Ferreira R, Leitão MC, Seddon KR, Rebelo LPN, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643–649

    Article  CAS  Google Scholar 

  • Pham TPT, Cho C, Min J, Yun Y (2008a) Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. J Biosci Bioeng 105:425–428

    Article  PubMed  CAS  Google Scholar 

  • Pham TPT, Cho C, Vijayaraghavan K, Min J, Yun Y (2008b) Effect of imidazolium-based ionic liquids on the photosynthetic activity and growth rate of Selenastrum capricornutum. Environ Toxicol Chem 27:1583–1589

    Article  PubMed  CAS  Google Scholar 

  • Pham TPT, Cho C, Yun Y (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  PubMed  CAS  Google Scholar 

  • Roberts DW, Costello J (2003) QSAR and mechanism of action for aquatic toxicity of cationic surfactants. QSAR Comb Sci 22:220–225

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273

    Article  PubMed  CAS  Google Scholar 

  • Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  • Siesko MM, Fleming WJ, Grossfeld RM (1997) Stress protein synthesis and peroxidase activity in a submersed aquatic macrophyte exposed to cadmium. Environ Toxicol Chem 16:1755–1760

    Article  CAS  Google Scholar 

  • Steinberg R (1946) Mineral requirement of Lemna minor. Plant Physiol 21:41–48

    Article  Google Scholar 

  • Stolte S, Matzke M, Arning J, Boschen A, Pitner W, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    Article  CAS  Google Scholar 

  • Studzińska S, Buszewski B (2009) Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.). Anal Bioanal Chem 393:983–990

    Article  PubMed  Google Scholar 

  • Ventura SPM, Goncçalves AMM, Goncçalves F, Coutinho JAP (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol 96:290–297

    Article  PubMed  CAS  Google Scholar 

  • Wang W (1990) Literature review on duckweed toxicity testing. Environ Res 52:7–22

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Huang P, Li X, Wang C, Zhang W, Wang J (2010) Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environ Toxicol 25:243–250

    Article  PubMed  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Chen C (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488:183–192

    Article  Google Scholar 

  • Yu M, Li SM, Li XY, Zhang BJ, Wang JJ (2008) Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol Environ Saf 71:903–908

    Google Scholar 

  • Yu M, Wang S, Luo Y, Han Y, Li X, Zhang B, Wang J (2009) Effects of the 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna. Ecotoxicol Environ Saf 72:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Malhotra SV (2002) Applications of ionic liquids in organic synthesis. Aldrichim Acta 35:75–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 20273019 and 20573034), the Henan Scientific and Technological Innovation Project for Prominent University Young Research Talents (094100510012), the Project of Henan Normal University (2010qk18), and the Key Subject of Fishery in Henan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Li or Jianji Wang.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Li, X., Chen, D. et al. Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor . Protoplasma 250, 103–110 (2013). https://doi.org/10.1007/s00709-012-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0379-5

Keywords

Navigation