Skip to main content
Log in

Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Acute toxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) to goldfish at different developmental stages and responses of the antioxidant system in adult goldfish were evaluated in the present study. The results indicate that post-embryonic developmental toxicity of [C8mim]Br on goldfish is developmental-stage dependent. The juvenile and larva goldfish are more sensitive to [C8mim]Br-toxicity than the adult fish. Histological observations in adult goldfish reveal that acute [C8mim]Br exposure damages the hepatopancreas, intestines, and kidneys, indicating that these are possible target organs of [C8mim]Br toxicity in goldfish. Subsequent biochemical assays in adult goldfish show that [C8mim]Br also induces changes in the activities of the superoxide dismutase, catalase, glutathione peroxidase, and glutathione content of fish hepatopancreas. These results suggest that [C8mim]Br exposure may induce oxidant stress and lipid peroxidation in hepatopancreas of adult goldfish. In addition, we also find that [C8mim]Br causes a remarkable increase in malondialdehyde (MDA) levels in the hepatopancreas of adult goldfish, and thus we think that the MDA level change can be a biomarker of [C8mim]Br toxicity in goldfish. The present study indicates that ionic liquids can be a threat to the survival, growth, and development of the fish population once they are accidentally leaked into aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barata C, Varo I, Navarro JC et al (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol Part C140:175–186

    Google Scholar 

  • Bernot RJ, Brueseke MA, Evans-White MA et al (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87–92

    Article  CAS  Google Scholar 

  • Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384–2389

    Article  CAS  Google Scholar 

  • Cho CW, Jeon YC, Pham TPT et al (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171

    Article  CAS  Google Scholar 

  • Costello DM, Brown LM, Lamberti GA (2009) Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem 11:548–553

    Article  CAS  Google Scholar 

  • Couling DJ, Bernot RJ, Docherty KM et al (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90

    Article  CAS  Google Scholar 

  • Czerwicka M, Müller AS, Siedleck EM et al (2009) Identification of ionic liquid breakdown products in an advanced oxidation system. J Hazard Mater 171:478–483

    Article  CAS  Google Scholar 

  • Eaton DL, Klaassen CD (2001) Principles of toxicology. In: Klaassen CD (ed) Casarett & Doull’s toxicology: The basic science of poisons. McGraw Hill Press, New york, pp 11–32

    Google Scholar 

  • Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids: part III. The first readily biodegradable ionic liquids. Green Chem 8:156–160

    Article  CAS  Google Scholar 

  • Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A 222:101–117

    Article  CAS  Google Scholar 

  • Hough WL, Smiglak M, Rodríguez H et al (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436

    Article  CAS  Google Scholar 

  • Jungnickel C, Luczak J, Ranke J et al (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Coll Surf A Physicochem Eng Aspects 316:278–284

    Article  CAS  Google Scholar 

  • Kärber G (1931) Beitrag zur kollektiven behandlung pharmakologischer reihenversuche. Arch Exp Pathol Pharmakol 162:480–482

    Article  Google Scholar 

  • Latała A, Nedzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem 11:1371–1376

    Article  Google Scholar 

  • Latała A, Nędzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64

    Article  Google Scholar 

  • Li P (1959) Embryonic developmental stage determination of goldfish and crucia carp. Acta Zool Sinica 11:145–154 in Chinese

    Google Scholar 

  • Livingstone DR (2001) Contaminant reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr NJ et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 93:265–275

    Google Scholar 

  • Luo YR, Li XY, Chen XX et al (2008) The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736–744

    Article  CAS  Google Scholar 

  • Morales AE, Pérez-Jiménez A, Hidalgo MC (2004) Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol Part C 139:153–161

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Papadimitriou E, Loumbourdis NS (2002) Exposure of the frog Rana nidibunda to copper impact on two biomarkers, lipid peroxidation and glutathione. Bull Environ Contam Toxicol 69:885–889

    Article  CAS  Google Scholar 

  • Petkovic M, Ferguson JL, Nimal Gunaratne HQ et al (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643–649

    Article  CAS  Google Scholar 

  • Pretti C, Chiappe C, Pieraccini D et al (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240

    Article  CAS  Google Scholar 

  • Pretti C, Chiappe C, Baldetti I et al (2009) Acute toxicity of ionic liquids for three fresh water organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Safe 72:1170–1176

    Article  CAS  Google Scholar 

  • Ranke J, Stolte S, Störmann R (2007) Design of sustainable chemical products—The example of ionic liquids. Chem Rev 107:2183–2206

    Article  CAS  Google Scholar 

  • Rantwijk F, Madeira Lau R, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138

    Article  Google Scholar 

  • Roberts DW, Costello J (2003) QSAR and mechanism of action for aquatic toxicity of cationic surfactants. QSAR Comb Sci 22:220–225

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Tojo J et al (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazardous Mater 151:268–273

    Article  CAS  Google Scholar 

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  • Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  Google Scholar 

  • Twyman RM (2001) Instant notes in developmental biology. In: Twyman RM (ed) BIOS scientific publishers limited, pp 1–45

  • Ventura SPM, Goncalves AMM, Goncalves F (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquatic Toxicol 96:290–297

    Article  CAS  Google Scholar 

  • Wang SH, Huang PP, Li XY et al (2010) Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environ Toxicol 25:243–250

    Article  CAS  Google Scholar 

  • Weyershausen B, Lehmann K (2004) Industrial application of ionic liquids as performance additives. Green Chem 7:15–19

    Article  Google Scholar 

  • Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  • Yang JZ, Lu XM, Gui JS et al (2004) A new theory for ionic liquids—the interstice model part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543

    Article  CAS  Google Scholar 

  • Yu M, Li S, Li X et al (2008) Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol Environ Safe 71:903–908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (Grant No. 20573019, 20573034), the Henan Scientific and Technological Innovation Project for University Prominent Young Research Talents (094100510012), the Research Project of the Ministry of Education of China ([2006]331) and the Key Subject of Fishery in Henan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yu Li or Jian-Ji Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XY., Zeng, SH., Dong, XY. et al. Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish. Ecotoxicology 21, 253–259 (2012). https://doi.org/10.1007/s10646-011-0785-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0785-z

Keywords

Navigation