Skip to main content

Advertisement

Log in

Virus manipulation of cell cycle

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475–4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179–202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein–protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim “Set a thief to catch a thief” as a counter strategy, however, provides us with the very same virus evasion strategies as “ready-made tools” for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Baydoun HH, Pancewicz J, Bai X, Nicot C (2010) HTLV-I p30 inhibits multiple S phase entry checkpoints, decreases cyclin E–CDK2 interactions and delays cell cycle progression. Mol Cancer 9:302

    Article  PubMed  CAS  Google Scholar 

  • Bertrand L, Pearson A (2008) The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol 89:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A (2010) Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol 84:109–118

    Article  PubMed  CAS  Google Scholar 

  • Besse S, Puvion-Dutilleul F (1996) Distribution of ribosomal genes in nucleoli of herpes simplex virus type 1 infected cells. Eur J Cell Biol 71:33–44

    PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  • Camus S, Menéndez S, Cheok CF, Stevenson LF, Laín S, Lane DP (2007) Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 26:4059–4070

    Article  PubMed  CAS  Google Scholar 

  • Castedo M, Kroemer G (2002) The beauty of death. Trends Cell Biol 12:446

    Article  PubMed  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T, Kroemer G (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • De Bolle L, Hatse S, Verbeken E, De Clercq E, Naesens L (2004) Human herpesvirus 6 infection arrests cord blood mononuclear cells in G(2) phase of the cell cycle. FEBS Lett 560:25–29

    Article  PubMed  Google Scholar 

  • Direkze S, Laman H (2004) Regulation of growth signalling and cell cycle by Kaposi's sarcoma-associated herpesvirus genes. Int J Exp Pathol 85:305–319

    Article  PubMed  CAS  Google Scholar 

  • E X, Pickering MT, Debatis M, Castillo J, Lagadinos A, Wang S, Lu S, Kowalik TF (2011) An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog 7:e1001342

    Article  PubMed  Google Scholar 

  • Flemington EK (2001) Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol 75:4475–4481

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Van Doorslaer K, Chen Z, Ristriani T, Masson M, Travé G, Burk RD (2010) Degradation of p53 by human Alphapapillomavirus E6 proteins shows a stronger correlation with phylogeny than oncogenicity. PLoS One 5(9):pii:e12816

    Google Scholar 

  • Fukumori T, Akari H, Yoshida A, Fujita M, Koyama AH, Kagawa S, Adachi A (2000) Regulation of cell cycle and apoptosis by human immunodeficiency virus type 1 Vpr. Microbes Infect 2:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Gaspar M, Shenk T (2006) Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci U S A 103:2821–2826

    Article  PubMed  CAS  Google Scholar 

  • Gatza ML, Chandhasin C, Ducu RI, Marriott SJ (2005) Impact of transforming viruses on cellular mutagenesis, genome stability, and cellular transformation. Environ Mol Mutagen 45:304–325

    Article  PubMed  CAS  Google Scholar 

  • Goodwin EC, Naeger LK, Breiding DE, Androphy EJ, DiMaio D (1998) Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol 72:3925–3934

    PubMed  CAS  Google Scholar 

  • Hobbs WE, DeLuca NA (1999) Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 73:8245–8255

    PubMed  CAS  Google Scholar 

  • Hong-Yan Z, Murata T, Goshima F, Takakuwa H, Koshizuka T, Yamauchi Y, Nishiyama Y (2001) Identification and characterization of the UL24 gene product of herpes simplex virus type 2. Virus Genes 22:321–327

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga R, Ozono E, Fujisawa J, Ikeda MA, Okamura N, Huang Y, Ohtani K (2008) Activation of the cyclin D2 and cdk6 genes through NF-kappaB is critical for cell-cycle progression induced by HTLV-I Tax. Oncogene 27:5635–5642

    Article  PubMed  CAS  Google Scholar 

  • Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:295–312

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Van Sant C, Roizman B (1997) Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol 71:7328–7336

    PubMed  CAS  Google Scholar 

  • Kino T, Gragerov A, Valentin A, Tsopanomihalou M, Ilyina-Gragerova G, Erwin-Cohen R, Chrousos GP, Pavlakis GN (2005) Vpr protein of human immunodeficiency virus type 1 binds to 14-3-3 proteins and facilitates complex formation with Cdc25C: implications for cell cycle arrest. J Virol 79:2780–2787

    Article  PubMed  CAS  Google Scholar 

  • Knight JS, Robertson ES (2004) Epstein–Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol 78:1981–1991

    Article  PubMed  CAS  Google Scholar 

  • Knox EG, Shannon HS (1988) Cancer of the cervix and the papilloma viruses. Eur J Epidemiol 4:83–92

    Article  PubMed  CAS  Google Scholar 

  • Kornitzer D, Sharf R, Kleinberger T (2001) Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol 154:331–344

    Article  PubMed  CAS  Google Scholar 

  • Li L, Gu B, Zhou F, Chi J, Wang F, Peng G, Xie F, Qing J, Feng D, Lu S, Yao K (2011) Human herpesvirus 6 suppresses T cell proliferation through induction of cell cycle arrest in infected cells in the G2/M phase. J Virol 85:6774–6783

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Shenk T (1999) Human cytomegalovirus UL69 protein induces cells to accumulate in G1 phase of the cell cycle. J Virol 73:676–683

    PubMed  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3:997–1007

    Article  CAS  Google Scholar 

  • Luo MH, Rosenke K, Czornak K, Fortunato EA (2007) Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 81:1934–1950

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Chen AY, Qiu J (2011) Bocavirus infection induces a DNA damage response that facilitates viral DNA replication and mediates cell death. J Virol 85:133–145

    Article  PubMed  CAS  Google Scholar 

  • Lymberopoulos MH, Bourget A, Abdeljelil NB, Pearson A (2011) Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology 412:341–348

    Article  PubMed  CAS  Google Scholar 

  • McVoy MA, Adler SP (1994) Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J Virol 68:1040–1051

    PubMed  CAS  Google Scholar 

  • Moody CA, Laimins LA (2009) Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5:e1000605

    Article  PubMed  Google Scholar 

  • Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560

    Article  PubMed  CAS  Google Scholar 

  • Moore PS, Chang Y (1998) Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. Trends Genet 14:144–150

    Article  PubMed  CAS  Google Scholar 

  • Nascimento R, Parkhouse RM (2007) Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2–cyclin B complex. J Gen Virol 88:1446–1453

    Article  PubMed  CAS  Google Scholar 

  • Nascimento R, Dias JD, Parkhouse RM (2009) The conserved UL24 family of human alpha, beta and gamma herpesviruses induces cell cycle arrest and inactivation of the cyclinB/cdc2 complex. Arch Virol 154:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Nishioka WK, Welsh RM (1994) Susceptibility to cytotoxic T lymphocyte-induced apoptosis is a function of the proliferative status of the target. J Exp Med 179:769–774

    Article  PubMed  CAS  Google Scholar 

  • Øster B, Bundgaard B, Höllsberg P (2005) Human herpesvirus 6B induces cell cycle arrest concomitant with p53 phosphorylation and accumulation in T cells. J Virol 79:1961–1965

    Article  PubMed  Google Scholar 

  • Pearson A, Coen DM (2002) Identification, localization, and regulation of expression of the UL24 protein of herpes simplex virus type 1. J Virol 76:10821–10828

    Article  PubMed  CAS  Google Scholar 

  • Pickering MT, Kowalik TF (2006) Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25:746–755

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481

    Article  PubMed  Google Scholar 

  • Planelles V, Jowett JB, Li QX, Xie Y, Hahn B, Chen IS (1996) Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol 70:2516–2524

    PubMed  CAS  Google Scholar 

  • Redpath S, Angulo A, Gascoigne NR, Ghazal P (2001) Immune checkpoints in viral latency. Annu Rev Microbiol 55:531–560

    Article  PubMed  CAS  Google Scholar 

  • Sagou K, Uema M, Kawaguchi Y (2010) Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids. J Virol 84:2110–2121

    Article  PubMed  CAS  Google Scholar 

  • Saha A, Halder S, Upadhyay SK, Lu J, Kumar P, Murakami M, Cai Q, Robertson ES (2011) Epstein–Barr virus nuclear antigen 3C facilitates G1-S transition by stabilizing and enhancing the function of cyclin D1. PLoS Pathog 7:e1001275

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Dodson GE, Shaikh S, Rundell K, Tibbetts RS (2005) Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. J Biol Chem 280:40195–40200

    Article  PubMed  CAS  Google Scholar 

  • Smits VA, Medema RH (2001) Checking out the G(2)/M transition. Biochim Biophys Acta 1519:1–12

    PubMed  CAS  Google Scholar 

  • Song B, Liu JJ, Yeh KC, Knipe DM (2000) Herpes simplex virus infection blocks events in the G1 phase of the cell cycle. Virology 267:326–334

    Article  PubMed  CAS  Google Scholar 

  • Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320:1507–1510

    Article  PubMed  CAS  Google Scholar 

  • Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418:348–352

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Pipas JM (2002) T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 66:179–202

    Article  PubMed  CAS  Google Scholar 

  • Sunil-Chandra NP, Efstathiou S, Nash AA (1992) Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73(Pt 12):3275–3279

    Article  PubMed  Google Scholar 

  • Upton JW, van Dyk LF, Speck SH (2005) Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular cdks. Virology 341:271–283

    Article  PubMed  CAS  Google Scholar 

  • van Dyk LF, Hess JL, Katz JD, Jacoby M, Speck SH, Virgin HW, V I (1999) The murine gammaherpesvirus 68 v-cyclin gene is an oncogene that promotes cell cycle progression in primary lymphocytes. J Virol 73:5110–5122

    PubMed  Google Scholar 

  • Verschuren EW, Jones N, Evan GI (2004) The cell cycle and how it is steered by Kaposi's sarcoma-associated herpesvirus cyclin. J Gen Virol 85:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Vossen MT, Westerhout EM, Söderberg-Nauclér C, Wiertz EJ (2002) Viral immune evasion: a masterpiece of evolution. Immunogenetics 54:527–542

    Article  PubMed  CAS  Google Scholar 

  • Wang SK, Duh CY, Chang TT (2000) Cloning and identification of regulatory gene UL76 of human cytomegalovirus. J Gen Virol 81:2407–2416

    PubMed  CAS  Google Scholar 

  • Wang SK, Duh CY, Wu CW (2004) Human cytomegalovirus UL76 encodes a novel virion-associated protein that is able to inhibit viral replication. J Virol 78:9750–9762

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xu Y, Tong W, Pan T, Li J, Sun S, Shao J, Ding H, Toyoda T, Yuan Z (2011) Hepatitis C virus NS5B protein delays S phase progression in human hepatocyte-derived cells by relocalizing cyclin-dependent kinase 2-interacting protein (CINP). J Biol Chem 286:26603–26615

    Article  PubMed  CAS  Google Scholar 

  • Weitzman MD, Carson CT, Schwartz RA, Lilley CE (2004) Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 3:1165–1173

    Article  CAS  Google Scholar 

  • Wiebusch L, Hagemeier C (1999) Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G(1). J Virol 73:9274–9283

    PubMed  CAS  Google Scholar 

  • Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331:851–858

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the “Fundação para a Ciencia e a Tecnologia”, SFRH/BPD/34643/2007 (Nascimento R.), SFRH/BD/27677/2006 (Costa H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nascimento.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nascimento, R., Costa, H. & Parkhouse, R.M.E. Virus manipulation of cell cycle. Protoplasma 249, 519–528 (2012). https://doi.org/10.1007/s00709-011-0327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0327-9

Keywords

Navigation