Skip to main content

Advertisement

Log in

Opportunities and successes in the search for plasmodesmal proteins

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The proteinaceous composition of plasmodesmata (PDs) is a puzzle for which pieces have proven particularly difficult to find. This review describes the numerous approaches that have been undertaken in the search for PD-associated proteins and what each has contributed to our understanding of PD structure and function. These approaches include immunolocalisation of known proteins, proteomic characterisation of PD-enriched tissue fractions, high-throughput screens of random cDNAs and mutant screens. In addition to components of the cytoskeleton, novel proteins with predicted or unknown functions have been identified. Many of these have properties that relate to the symplastic and/or apoplastic faces of the plasma membrane. Mutant screens have identified proteins involved in previously unconnected cell pathways such as ROS signalling, implicating ROS in PD formation and regulation. Proteins associated with callose synthesis and degradation have also been identified and characterised, providing considerable weight to the hypothesis that callose deposition around the neck of the PD pore is one mechanism by which the PD aperture is regulated. The techniques described in this review have been developed such that it is to be expected that a considerable number of new PD proteins will be identified in coming years to fill in further detail of the structure and functional mechanisms of these dynamic pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didie P, Lerich A, Mutterer J, Thomas C, Heinlein M, Mély Y, Maule AJ, and Ritzenthaler C (2010) Plasmodesmal proteins that mediate movement of plant viruses. PLoS Pathog 6:e1001119. doi:10.1371/journal.ppat.1001119

  • Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    Article  CAS  PubMed  Google Scholar 

  • Badelt K, White RG, Overall RL, Vesk M (1994) Ultrastructural specializations of the cell-wall sleeve around plasmodesmata. Am J Bot 81:1422–1427

    Article  Google Scholar 

  • Baluska F, Samaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    Article  CAS  PubMed  Google Scholar 

  • Bayer E, Thomas CL, Maule AJ (2004) Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223:93–102

    Article  CAS  PubMed  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Article  CAS  PubMed  Google Scholar 

  • Belitser NV, Zaalishvili GV, Sytnianskaja NP (1982) Ca2+-binding sites and Ca2+ ATPase activity in barley root-tip cells. Protoplasma 111:63–78

    Article  CAS  Google Scholar 

  • Benitez-Alfonso Y, Cilia M, Roman AS, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106:3615–3620

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule A (2010) Plasmodesmata: Gateways to Local and Systemic Infection. Mol Plant-Microbe Interact. doi:10.1094/MPMI-05-10-0116

  • Ben-Nissan G, Cui W, Kim DJ, Yang YD, Yoo BC, Lee JY (2008) Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol 148:1897–1907

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nissan G, Yang YD, Lee JY (2010) Partitioning of casein kinase 1-like 6 to late endosome-like vesicles. Protoplasma 240:45–56

    Article  CAS  PubMed  Google Scholar 

  • Bergeron JJM, Au CE, Desjardins M, McPherson PS, Nilsson T (2010) Cell biology through proteomics—ad astra per alia porci. Trends Cell Biol 20:337–345

    Article  CAS  PubMed  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    Article  CAS  Google Scholar 

  • Blackman LM, Gunning BES, Overall RL (1998) A 45 kda protein isolated from the nodal walls of Chara corallina is localised to plasmodesmata. Plant J 15:401–411

    Article  CAS  Google Scholar 

  • Blackman LM, Harper JDI, Overall RL (1999) Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol 78:297–304

    CAS  PubMed  Google Scholar 

  • Bortolotti C, Murillo I, Fontanet P, Coca M, Segundo BS (2005) Long-distance transport of the maize pathogenesis-related PRms protein through the phloem in transgenic tobacco plants. Plant Sci 168:813–821

    Article  CAS  Google Scholar 

  • Botha CEJ, Cross RHN (2000) Towards reconciliation of structure with function in plasmodesmata—who is the gatekeeper? Micron 31:713–721

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Zambryski PC (2010) Loss of INCREASED SIZE EXCLSUION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20:989–993

    Article  CAS  PubMed  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Das P, Hari V (1994) In-situ localization of ATPase activity in cells of plants infected by maize-dwarf mosaic potyvirus. Arch Virol 134:433–439

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Sheng JS, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  CAS  PubMed  Google Scholar 

  • Christensen NM, Faulkner C, Oparka K (2009) Evidence for unidirectional flow through plasmodesmata. Plant Physiol 150:96–104

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw J (1980) ATPases in mature and differentiating phloem and xylem. J Histochem Cytochem 28:375–377

    CAS  PubMed  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffiths JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723

    Article  CAS  PubMed  Google Scholar 

  • Delmer DP, Volokita M, Solomon M, Fritz U, Delphendahl W, Herth W (1993) A monoclonal-antibody recognizes a 65 kda higher-plant membrane polypeptide which undergoes cation-dependent association with callose synthase in-vitro and colocalizes with sites of high callose deposition in-vivo. Protoplasma 176:33–42

    Article  CAS  Google Scholar 

  • Dhugga KS, Tiwari SC, Ray PM (1997) Trans golgi localization of the reversibly glycosylated polypeptides possibly involved in hemicellulose formation from pea. Plant Physiol 114:98–98

    Google Scholar 

  • Ehlers K, van Bel AJE (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231:371–385

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, Schulz M, Kollmann R (1996) Subcellular localization of ubiquitin in plant protoplasts and the function of ubiquitin in selective degradation of outer-wall plasmodesmata in regenerating protoplasts. Planta 199:139–151

    CAS  Google Scholar 

  • Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1, 3-glucanases. Semin Cell Dev Biol 20:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Epel BL, vanLent JWM, Cohen L, Kotlizky G, Katz A, Yahalom A (1996) A 41 kda protein isolated from maize mesocotyl cell walls immunolocalizes to plasmodesmata. Protoplasma 191:70–78

    Article  CAS  Google Scholar 

  • Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523

    Article  CAS  PubMed  Google Scholar 

  • Faulkner CR, Blackman LM, Cordwell SJ, Overall RL (2005) Proteomic identification of putative plasmodesmatal proteins from Chara corallina. Proteomics 5:2866–2875

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518

    Article  CAS  PubMed  Google Scholar 

  • Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL (2009) Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 88:357–369

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Calvino L, Faulkner C, Maule A (2011) Plasmodesmata as active conduits for virus cell-cell movement. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Horizon Scientific, Norwich, pp 47–74

    Google Scholar 

  • Fitzgibbon J, Bell K, King E, Oparka K (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153:1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  Google Scholar 

  • Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant-Microbe Interact 21:335–345

    Article  CAS  PubMed  Google Scholar 

  • Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong ZL, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137:1731–1741

    Article  CAS  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    Article  CAS  PubMed  Google Scholar 

  • Hughes JE, Gunning BES (1980) Glutaraldehyde-induced deposition of callose. Can J Bot 58:250–258

    CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Karlson DT, Fujino T, Kimura S, Baba K, Itoh T, Ashworth EN (2003) Novel plasmodesmata association of dehydrin-like proteins in cold-acclimated red-osier dogwood (Cornus sericea). Tree Physiol 23:759–767

    CAS  PubMed  Google Scholar 

  • Kelleher JF, Atkinson SJ, Pollard TD (1995) Sequences, structural models, and cellular localisation of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J Cell Biol 131:385–397

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005a) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Rim Y, Wang L, Jackson D (2005b) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Otegui MS, Krishnakumar S, Mindrinos M, Zambryski P (2007) INCREASED SIZE EXCLSUION LIMIT2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19:1885–1897

    Article  CAS  PubMed  Google Scholar 

  • Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH (2005) High-throughput protein localization in Arabidopsis using agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J 41:162–174

    Article  CAS  PubMed  Google Scholar 

  • Kotlizky G, Shurtz S, Yahalom A, Malik Z, Traub O, Epel BL (1992) An improved procedure for the isolation of plasmodesmata embedded in clean maize cell-walls. Plant J 2:623–630

    Article  Google Scholar 

  • Kragler F, Monzer J, Xoconostle-Cazares B, Lucas WJ (2000) Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO J 19:2856–2868

    Article  CAS  PubMed  Google Scholar 

  • Kronberg K, Vogel F, Rutten T, Hajirezaei MR, Sonnewald U, Hofius D (2007) The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein. Plant Physiol 145:905–918

    Article  CAS  PubMed  Google Scholar 

  • Lam SK, Tse YC, Miao Y, Li HY, Wang J, Lo SW, Jiang LW (2007) Molecular characterization of plant prevacuolar and endosomal compartments. J Integ Plant Biol 49:1119–1128

    Article  CAS  Google Scholar 

  • Lee JY, Yoo BC, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299:392–396

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17:2817–2831

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  CAS  PubMed  Google Scholar 

  • Liu DYT, Kuhlmey BT, Smith PMC, Day DA, Faulkner CR, Overall RL (2008) Reflection across plant cell boundaries in confocal laser scanning microscopy. J Microscopy 231:349–357

    Article  CAS  Google Scholar 

  • Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN, Wolf S (1993) Influence of the tobacco mosaic-virus 30-kda movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190:88–96

    Article  CAS  Google Scholar 

  • Lucas WJ, Bouchepillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its messenger-RNA through plasmodesmata. Science 270:1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Meiners S, Schindler M (1987) Immunological evidence for gap junction polypeptide in plant-cells. J Biol Chem 262:951–953

    CAS  PubMed  Google Scholar 

  • Meiners S, Schindler M (1989) Characterization of a connexin homolog in cultured soybean cells and diverse plant organs. Planta 179:148–155

    Article  CAS  Google Scholar 

  • Meiners S, Xu AD, Schindler M (1991) Gap junction protein homolog from Arabidopsis thaliana—evidence for connexins in plants. Proc Natl Acad Sci USA 88:4119–4122

    Article  CAS  PubMed  Google Scholar 

  • Morvan O, Quentin M, Jauneau A, Mareck A, Morvan C (1998) Immunogold localization of pectin methylesterases in the cortical tissues of flax hypocotyl. Protoplasma 202:175–184

    Article  CAS  Google Scholar 

  • Murillo I, Cavallarin L, SanSegundo B (1997) The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles. Plant Cell 9:145–156

    Article  CAS  PubMed  Google Scholar 

  • Mushegian AR, Koonin EV (1993) The proposed plant connexin is a protein kinase-like protein. Plant Cell 5:998–999

    Article  CAS  PubMed  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant-cells. Planta 178:353–366

    Article  CAS  Google Scholar 

  • Nougarede A, Landre P, Rembur J, Hernandez MN (1985) Are variations of the activities of 5'-nucleotidase and adenylate-cyclase the components of inhibition release of the cotyledonary bud of peas. Can J Bot 63:309–323

    Article  CAS  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucl Acids Res 37:D987–D991

    Article  CAS  PubMed  Google Scholar 

  • Olesen P (1979) Neck constriction in plasmodesmata—evidence for a peripheral sphincter-like structure revealed by fixation with tannic-acid. Planta 144:349–358

    Article  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts L, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Knox JP (2000) Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol 122:775–781

    Article  CAS  PubMed  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Paape M, Solovyev AG, Erokhina TN, Minina EA, Schepetilnikov MV, Lesemann DE, Schiemann J, Morozov SY, Kellmann JW (2006) At-4/1, an interactor of the tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. Mol Plant-Microbe Interact 19:874–883

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Wei HR, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  CAS  PubMed  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    Article  CAS  PubMed  Google Scholar 

  • Radford JE, White RG (2001) Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits. Protoplasma 216:47–55

    Article  CAS  PubMed  Google Scholar 

  • Radford JE, Vesk M, Overall RL (1997) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, Retana SG, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaitre B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus x movement. Plant Cell 21:1541–1555

    Article  CAS  PubMed  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567

    Article  CAS  PubMed  Google Scholar 

  • Rinne PLH, van den Boogaard R, Mensink MGJ, Kopperud C, Kormelink R, Goldbach R, van der Schoot C (2005) Tobacco plants respond to the constitutive expression of the tospovirus movement protein NSm with a heat-reversible sealing of plasmodesmata that impairs development. Plant J 43:688–707

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Watada AE, Wergin WP (1997) Characterization of the cell wall microdomain surrounding plasmodesmata in apple fruit. Plant Physiol 114:539–547

    CAS  PubMed  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 Reversibly Glycosylated Polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. Plant Cell 17:1788–1800

    Article  CAS  PubMed  Google Scholar 

  • Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    Article  CAS  PubMed  Google Scholar 

  • Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P (2009) Loss of the plant dead-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Natl Acad Sci U S A 106:17229–17234

    Article  CAS  PubMed  Google Scholar 

  • Su S, Liu Z, Chen C, Zhang Y, Wang X, Zhu L, Miao L, Wang X-C, Yuan M (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373–1387

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y (2002) ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol 43:419–428

    Article  CAS  PubMed  Google Scholar 

  • Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:180–190

    Article  CAS  Google Scholar 

  • Tian GW, Mohanty A, Chary SN, Li SJ, Paap B, Drakakaki G, Kopec CD, Li JX, Ehrhardt D, Jackson D, Rhee SY, Raikhel NV, Citovsky V (2004) High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol 135:25–38

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Olsen L, Sun B, Lid SE, Brown RC, Lemmon BE, Fosnes K, Gruis DF, Opsahl-Sorteberg HG, Otegui MS, Olsen OA (2007) Subcellular localization and functional domain studies of defective kernel1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 19:3127–3145

    Article  CAS  PubMed  Google Scholar 

  • Tucker EB (1990) Calcium-loaded 1, 2-bis(2-aminophenoxy)ethane-n, n, n’, n’-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    Article  CAS  Google Scholar 

  • Tucker EB, Boss WF (1996) Mastoparan-induced intracellular ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111:459–467

    CAS  PubMed  Google Scholar 

  • Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root-tips—structure and composition. J Cell Sci 107:3351–3361

    CAS  PubMed  Google Scholar 

  • Van Gestel K, Slegers H, von Witsch M, Samaj J, Baluska F, Verbelen J-P (2003) Immunological evidence for the presence of plant homologues of the actin-related protein Arp3 in tobacco and maize: subcellular localisation to actin-enriched pit fields and emerging root hairs. Protoplasma 222:45–52

    Article  PubMed  Google Scholar 

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Suppl):W214–W220

    Article  CAS  PubMed  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  • Wiederhold E, Veenhoff LM, Poolman B, Slotboom DJ (2010) Proteomics of Saccharomyces cerevisiae organelles. Mol Cell Proteomics 9:431–445

    Article  CAS  PubMed  Google Scholar 

  • Yahalom A, Warmbrodt RD, Laird DW, Traub O, Revel JP, Willecke K, Epel BL (1991) Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies. Plant Cell 3:407–417

    Article  CAS  PubMed  Google Scholar 

  • Yahalom A, Lando R, Katz A, Epel BL (1998) A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J Plant Physiol 153:354–362

    CAS  Google Scholar 

  • Yan W, Aebersold R, Raines EW (2009) Evolution of organelle-associated protein profiling. J Proteomics 72:4–11

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Harris DP, Luo F, Xiong WL, Joachimiak M, Wu LY, Dehal P, Jacobsen J, Yang ZM, Palumbo AV, Arkin AP, Zhou JZ (2009) Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC Genomics 10:131

    Article  PubMed  Google Scholar 

  • Zavaliev R, Sagi G, Gera A, Epel BL (2010) The constitutive expression of Arabidopsis plasmodesmal-associated class 1 Reversibly Glycosylated Polypeptide impairs plant development and virus spread. J Exp Bot 61:131–142

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Maule.

Additional information

Handling Editor: Alexander Schulz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, C., Maule, A. Opportunities and successes in the search for plasmodesmal proteins. Protoplasma 248, 27–38 (2011). https://doi.org/10.1007/s00709-010-0213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0213-x

Keywords

Navigation