Skip to main content

Soybean Plants Under Waterlogging Stress: Responses and Adaptation Mechanisms

  • Chapter
  • First Online:
Managing Plant Production Under Changing Environment

Abstract

Waterlogging stress retards plant growth and development by inducing a number of physiochemical processes. Plants subjected to waterlogging suffer from substantial yield losses. In soybean, waterlogging stress creates partial or full deprivation of oxygen, which leads to severe morphophysiological decays in the plant. Excess accumulation of reactive oxygen species and poor antioxidant defense system become phenomenal under such conditions. As a consequence, water and nutrient uptake, stomatal conductance, photosynthesis rate, enzymatic activities, and hormonal balances are greatly disrupted. However, soybean develops few anatomical features among which the formation of the adventitious root is of great importance to counteract the detrimental effect of waterlogging stress. This chapter focuses on soybean plant responses to waterlogging conditions and different approaches how waterlogging tolerance or adaptation can be imparted in soybean through morphological and anatomical modifications as well as hormonal regulation and antioxidant balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA :

abscisic acid

ADH:

alcohol dehydrogenase

APX:

ascorbate peroxidase

CAT :

catalase

Chl :

chlorophyll

CySNO :

S-nitroso L-cysteine

DAS :

days after sowing

DAT :

days after treatment

EBR :

24-epibrassinolide

Fe:

iron

GA :

gibberellic acid

GR :

glutathione reductase

GB :

glycinebetaine

H2O2 :

hydrogen peroxide

JA :

jasmonic acid

LDH :

lactate dehydrogenase

MDA :

malondialdehyde

MSI :

membrane stability index

NADH :

nicotinamide adenine dinucleotide hydride

PDC :

pyruvate decarboxylase

POD :

peroxidase

Pro :

proline

QTL :

quantitative trait locus

ROS :

reactive oxygen species

RWC :

relative water content

SA :

salicylic acid

SNO :

S-nitrosothiol

SNP :

sodium nitroprusside

SOD :

superoxide dismutase

WSL :

waterlogged-susceptible line

WTL :

waterlogged-tolerant line

References

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford, p 385

    Google Scholar 

  • Akhtar I, Nazir N (2013) Effect of waterlogging and drought stress in plants. Int J Water Res Environ Sci 2:34–40

    Google Scholar 

  • Akter T, Ali MR, Rohman MM, Uddin MS (2018) Comparative analysis of biochemical and physiological responses of maize genotypes under waterlogging stress. 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security. CIMMYT, Mexico, D.F, Oct. 8-10, Ludhiana, India

    Google Scholar 

  • Al-Amri SM (2019) Differential response of faba bean (vicia faba L.) plants to water deficit and waterlogging stresses. Appl Ecol Environ Res 17(3):6287–6298

    Google Scholar 

  • Alizadeh-Vaskasi F, Pirdashti H, Cherati Araei A, Saadatmand S (2018) Waterlogging effects on some antioxidant enzymes activities and yield of three wheat promising lines. Acta Agric Slov 111(3):621–631

    Google Scholar 

  • Amri M, El Ouni MHM, Salem B (2014) Waterlogging affect the development, yield and components, chlorophyll content and chlorophyll fluorescence of six bread wheat genotypes (Triticum aestivum L.). Bulg J Agric Sci 20:647–657

    Google Scholar 

  • Anandan A, Pradhan SK, Das SK, Behera L, Sangeetha G (2015) Differential responses of rice genotypes and physiological mechanism under prolonged Deepwater flooding. Field Crop Res 172:153–163

    Google Scholar 

  • Andrade CA, de Souza KRD, de Oliveira SM, da Silva DM, Alves JD (2018) Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Sci Hortic 232:40–45

    CAS  Google Scholar 

  • Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, Fujita M, Hasanuzzaman M (2019) Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 8(7):196. https://doi.org/10.3390/plants8070196

    Article  CAS  PubMed Central  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins-major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121

    CAS  Google Scholar 

  • Ara R, Mannan MA, Khaliq QA, Uddin Miah MM (2015) Waterlogging tolerance of soybean. Bangladesh Agron J 18(2):105–109

    Google Scholar 

  • Bajpai S, Chandra R (2015) Effect of waterlogging stress on growth characteristics and sod gene expression in sugarcane. Int J Sci Res 5(1):1–8

    Google Scholar 

  • Bansal R, Sharma S, Tripathi K, Kumar A (2019) Waterlogging tolerance in black gram [Vigna mungo (L.) Hepper] is associated with chlorophyll content and membrane integrity. Indian J Biochem Biophys 56(1):81–85

    CAS  Google Scholar 

  • Barickman TC, Simpson CR, Sams CE (2019) Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants 8(6):160. https://doi.org/10.3390/plants8060160

    Article  CAS  PubMed Central  Google Scholar 

  • Beutler AN, Giacomeli R, Albertom CM, Silva VN, da Silva Neto GF, Machado GA, Santos ATL (2014) Soil hydric excess and soybean yield and development in Brazil. Aust J Crop Sci 8:1461–1466

    Google Scholar 

  • Borella J, De Oliveira DDC, De Oliveira ACB, Braga EJB (2014) Waterlogging-induced changes in fermentative metabolism in roots and nodules of soybean genotypes. Sci Agric 71:499–508

    Google Scholar 

  • Chávez-Arias CC, Gómez-Caro S, Restrepo-Díaz H (2019) Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agronomy 9(5):213. https://doi.org/10.3390/agronomy9050213

    Article  CAS  Google Scholar 

  • Cho JW, Yamakawa T (2006) Effects on growth and seed yield of small seed soybean cultivars of flooding conditions in paddy field. J Fac Agr Kyushu Univ 51(2):189–193

    CAS  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    CAS  PubMed  Google Scholar 

  • da-Silva CJ, do Amarante L (2020a) Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation. Environ Exp Bot 180:104242. https://doi.org/10.1016/j.envexpbot.2020.104242

    Article  CAS  Google Scholar 

  • da-Silva CJ, do Amarante L (2020b) Short-term nitrate supply decreases fermentation and oxidative stress caused by waterlogging in soybean plants. Environ Exp Bot 176:104078. https://doi.org/10.1016/j.envexpbot.2020.104078

    Article  CAS  Google Scholar 

  • Duhan S, Kumari A, Bala S, Sharma N, Sheokand S (2018) Effects of waterlogging, salinity and their combination on stress indices and yield attributes in pigeonpea (Cajanus cajan L. Millsp.) genotypes. Ind J Plant Physiol 23(1):65–76

    Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Google Scholar 

  • Ezin V, Pena RDL, Ahanchede A (2010) Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz J Plant Physiol 22:131–142

    Google Scholar 

  • Fatimah VS, Nurhidayati T (2020) Morphophysiological characteristic responses of soybean (Glycine max L.) grobogan variety in waterlogging stress. Ecol Environ Conserv 26:S132–S138

    Google Scholar 

  • Garcia N, da-Silva CJ, Cocco KLT, Pomagualli D, de Oliveira FK, da Silva JVL, de Oliveira ACB, do Amarante L (2020) Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environ Exp Bot 172:103975. https://doi.org/10.1016/j.envexpbot.2020.103975

    Article  CAS  Google Scholar 

  • González JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Bot Stud 50:35–42

    Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Google Scholar 

  • Hasanuzzaman M, Islam MT, Nahar K, Anee TI (2018) Drought stress tolerance in wheat: omics approaches in enhancing antioxidant defense. In: Zargar SM (ed) Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer, New York, pp 267–307

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Anee TI, Parvin K, Fujita M (2017a) Nitric oxide pretreatment enhances antioxidant defense and glyoxalase system to confer PEG-induced oxidative stress in rapeseed. J Plant Interact 12:323–331

    CAS  Google Scholar 

  • Hasanuzzaman M, Mahmud JA, Nahar K, Inafuku M, Oku H, Fujita M (2017b) Plant responses, adaptation and ROS metabolism in plants exposed to waterlogging stress. In: Khan MIR, Khan NA, Ismail AM (eds) Reactive oxygen species and antioxidant systems: role and regulation under abiotic stress. Springer, Singapore, pp 257–281

    Google Scholar 

  • Herzog M, Striker GG, Colmer TD, Pedersen O (2016) Mechanisms of waterlogging tolerance in wheat–a review of root and shoot physiology. Plant Cell Environ 39(5):1068–1086

    CAS  PubMed  Google Scholar 

  • Jannat R, Uraji M, Morofuji M, Islam MM, Bloom RE, Nakamura Y, McClung CR, Schroeder JI, Mori IC, Murata Y (2011) Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J Plant Physiol 168(16):1919–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jitsuyama Y (2017) Hypoxia-responsive root hydraulic conductivity influences soybean cultivar-specific waterlogging tolerance. Am J Plant Sci 8(4):770–790

    CAS  Google Scholar 

  • Khan MA, Hamayun M, Iqbal A, Khan SA, Hussain A, Asaf S, Khan AL, Yun BW, Lee IJ (2018) Gibberellin application ameliorates the adverse impact of short-term flooding on Glycine max L. Biochem J 475(18):2893–2905

    CAS  PubMed  Google Scholar 

  • Khan MA, Khan AL, Imran QM, Asaf S, Lee S, Yun B, Hamayun M, Kim T, Lee I (2019) Exogenous application of nitric oxide donors regulates short-term flooding stress in soybean. PeerJ 7:e7741. https://doi.org/10.7717/peerj.7741

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim EH, Ro HM, Kim SL, Kim HS, Chung IM (2012) Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean (Glycine max (L.) Merrill) germplasms of different seed weights and origins. J Agric Food Chem 60:6045–6055

    CAS  PubMed  Google Scholar 

  • Kim Y, Seo CW, Khan AL, Mun BG, Shahzad R, Ko JW, Yun BW, Lee IJ (2018) Ethylene mitigates waterlogging stress by regulating glutathione biosynthesis-related transcripts in soybeans. Bio Rxiv. https://doi.org/10.1101/252312

  • Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ (2015) Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci 6:714. https://doi.org/10.3389/fpls.2015.00714

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Deschamps T, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H (2011) Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol 77:309–322

    CAS  PubMed  Google Scholar 

  • Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P (2013) Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 12(11):4769–4784

    CAS  PubMed  Google Scholar 

  • Komatsu S, Sakata K, Nanjo Y (2015) ‘Omics’ techniques and their use to identify how soybean responds to flooding. J Anal Sci Technol 6:9. https://doi.org/10.1186/s40543-015-0052-7

    Article  CAS  Google Scholar 

  • Kumar KM, Sujatha KB, Rajashree V, Kalarani MK (2018) Study on gas exchange and antioxidant system of solanaceous species under water logged conditions. J Agric Ecol 6:54–63

    Google Scholar 

  • Kumar P, Pal M, Joshi R, Sairam RK (2013) Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol Mol Biol Plants 19:209–220

    CAS  PubMed  Google Scholar 

  • Kuswantoro H (2015) Agronomical characters of some soybean germplasm under waterlogging condition. J Agron 14(2):93–97

    Google Scholar 

  • Lapaz AM, de Camargos LS, Yoshida CHP, Firmino AC, de Figueiredo PAM, Aguilar JV, Nicolai AB, de Paiva WDS, Cruz VH, Tomaz RS (2020) Response of soybean to soil waterlogging associated with iron excess in the reproductive stage. Physiol Mol Biol Plants 26:1635–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Mo W, Ashraf U, Li G, Wen T, Abrar M, Gao L, Liu J, Hu J (2018) Evaluation of physiological indices of waterlogging tolerance of different maize varieties in South China. Appl Ecol Environ Res 16:2059–2072

    Google Scholar 

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    CAS  PubMed  Google Scholar 

  • Liu J, Hasanuzzaman M, Suna H, Zhanga J, Penga T, Suna H, Xina Z, Zhaoa Q (2020) Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia. Environ Exp Bot 169:103916. https://doi.org/10.1016/j.envexpbot.2019.103916

    Article  CAS  Google Scholar 

  • Lone AA, Warsi MZK (2009) Response of maize (Zea mays L.) to excess soil moisture (ESM) tolerance at different stages of life cycle. Bot Res Int 2:211–217

    Google Scholar 

  • Luan H, Guo B, Pan Y, Lv C, Shen H, Xu R (2018) Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regul 85:399–409

    CAS  Google Scholar 

  • Miao S, Shi H, Jian J, Judong L, Xiaobing L, Guanghua W (2012) Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture. J Food Agric Environ 10:819–824

    Google Scholar 

  • Miura K, Ogawa A, Matsushima K, Morita H (2012) Root and shoot growth under flooded soil in wild groundnut (Glycine soja) as a genetic resource of waterlogging tolerance for soybean (Glycine max). Pak J Weed Sci Res 18:427–433

    Google Scholar 

  • Mustafa G, Komatsu S (2014) Quantitative proteomics reveals the effects of protein glycosylation in soybean root under flooding stress. Front Plant Sci 18:627. https://doi.org/10.3389/fpls.2014.00627

    Article  Google Scholar 

  • Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparitive evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120

    CAS  PubMed  Google Scholar 

  • Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Rouf Mian MA, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    CAS  Google Scholar 

  • Oliva ML, Shannon JG, Sleper DA, Ellersieck MR, Cardinal AJ, Paris RL, Lee JD (2006) Stability of fatty acid profile in soybean genotypes with modified seed oil composition. Crop Sci 46:2069–2075

    CAS  Google Scholar 

  • Oosterhuis DM, Scott HD, Hampton RE, Wullschleter SD (1990) Physiological response of two soybean [Glycine max L. Merr] cultivars to short-term flooding. Environ Exp Bot 30(1):85–92

    Google Scholar 

  • Palta JA, Ganjealic A, Turnerb NC, Siddique KHM (2010) Effects of transient subsurface waterlogging on root growth, plant biomass and yield of chickpea. Agric Water Manag 97:1469–1476

    Google Scholar 

  • Park JS, Lee EJ (2019) Waterlogging induced oxidative stress and the mortality of the Antarctic plant, Deschampsia antarctica. J Ecol Environ 43(1):1–8

    Google Scholar 

  • Pereira YC, da Silva FR, da Silva BRS, Cruz FJR, Marques DJ, Lobato AKDS (2020) 24-epibrassinolide induces protection against waterlogging and alleviates impacts on the root structures, photosynthetic machinery and biomass in soybean. Plant Signal Behav 15:11. https://doi.org/10.1080/15592324.2020.1805885

    Article  CAS  Google Scholar 

  • Phukan UJ, Mishra S, Shukla RK (2016) Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol 36(5):956–966

    PubMed  Google Scholar 

  • Ploschuk RA, Miralles DJ, Colmer TD, Striker GG (2020) Waterlogging differentially affects yield and its components in wheat, barley, rapeseed and field pea depending on the timing of occurrence. J Agron Crop Sci 206(3):363–375

    CAS  Google Scholar 

  • Prasanna YL, Rao GR (2014) Effect of waterlogging on growth and seed yield in greengram genotypes. Int J Food Agric Vet Sci 4:124–128

    Google Scholar 

  • Rajendran A, Lal SK, Jain SK, Raju D (2019) Screening of soybean genotypes for pre-germination anaerobic stress tolerance to waterlogging. J Pharmacogn Phytochem 2:01–03

    Google Scholar 

  • Rasaei A, Ghobadi ME, Jalali-Honarmand S, Ghobadi M, Saeidi M (2012) Impacts of waterlogging on shoot apex development and recovery effects of nitrogen on grain yield of wheat. Eur J Exp Biol 2:1000–1007

    CAS  Google Scholar 

  • Rasheed R, Iqbal M, Ashraf MA, Hussain I, Shafiq F, Yousaf A, Zaheer A (2018) Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato. J Hortic Sci Biotechnol 93(4):385–391

    CAS  Google Scholar 

  • Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, Zhao B (2014) Effects of waterlogging on the yield and growth of summer maize under field conditions. Can J Plant Sci 94:23–31

    Google Scholar 

  • Rhine M, Stevens G, Shannon G, Wrather A, Sleper D (2010) Yield and nutritional responses to waterlogging of soybean cultivars. Irrig Sci 28:135–142

    Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49(6):636–645

    PubMed  Google Scholar 

  • Ruchi B, Shivani S, Kuldeep T, Ashok K (2019) Waterlogging tolerance in black gram [Vigna mungo (L.) Hepper] is associated with chlorophyll content and membrane integrity. Indian J Biochem Biophys 56:81–85

    Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277. https://doi.org/10.3390/antiox10020277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha RR, Ahmed F, Mokarroma N, Rohman MM, Golder PC (2016) Physiological and biochemical changes in waterlog tolerant sesame genotypes. SAARC J Agric 14(2):31–45

    Google Scholar 

  • Sairam RK, Dharmar K, Lekshmy S, Chinnusamy V (2011) Expression of antioxidant defense genes in mung bean (Vigna radiata L.) roots under water-logging is associated with hypoxia tolerance. Acta Physiol Plant 33(3):735–744

    CAS  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena RC (2009) Waterlogging induced oxidative stress and antioxidant enzymes activity in pigeon pea. Biol Plant 53:493–504

    CAS  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plant 52(3):401–412

    CAS  Google Scholar 

  • Sakazono S, Nagata T, Matsuo R, Kajihara S, Watanabe M, Ishimoto M, Shimamura S, Harada K, Takahashia R, Mochizuki T (2014) Variation in root development response to flooding among 92 soybean lines during early growth stages. Plant Prod Sci 17(3):228–236

    Google Scholar 

  • Sarkar PK, Khatun A, Singha A (2016) Effect of duration of water-logging on crop stand and yield of sesame. Int J Innov App Stud 14(1):1–6

    Google Scholar 

  • Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17(2):131–137. https://doi.org/10.1626/pps.17.131

    Article  CAS  Google Scholar 

  • Shin S, Jung GH, Kim SG, Son BY, Kim SG, Lee JS, Kim JT, Bae HH, Kwon Y, Shim KB, Lee JE, Baek SB, Jeon WT (2017) Effect of prolonged waterlogging on growth and yield of characteristics of maize (Zea mays L.) at early vegetative stage. J Korean Soc Grassl Forage Sci 37(4):271–276

    Google Scholar 

  • Sigua G, Williams M, Chase C Jr, Albano J, Kongchum M (2012) Yield and uptake of bahiagrass under flooded environment as affected by nitrogen fertilization. Agric Sci 3:491–500

    CAS  Google Scholar 

  • Smethurst CF, Garnet T, Shabala S (2005) Nutrition and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging subsequent recovery. Plant Soil 270:31–45

    CAS  Google Scholar 

  • Song L, Valliyodan B, Prince S, Wan J, Nguyen HT (2018) Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. Int J Mol Sci 19(9):2705. https://doi.org/10.3390/ijms19092705

    Article  CAS  PubMed Central  Google Scholar 

  • Sudarić A, Kočar MM, Duvnjak T, Zdunić Z, Kulundžić AM (2019) Improving seed quality of soybean suitable for growing in europe. In: Sudarić A (ed) Soybean for human consumption and animal feed. IntechOpen, London. https://doi.org/10.5772/intechopen.89922

    Chapter  Google Scholar 

  • Suematsu K, Abiko T, Nguyen VL, Mochizuki T (2017) Phenotypic variation in root development of 162 soybean accessions under hypoxia condition at the seedling stage. Plant Prod Sci 20(3):323–335

    Google Scholar 

  • Sullivan M, Van Toai TT, Fausey N, Beuerlein J, Parkinson R, Soboyejo A (2001) Evaluating on-farm flooding impacts on soybean. Crop Sci 41:93–100

    Google Scholar 

  • Thomas AL, Guerreiro SMC, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96(7):1191–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tougou M, Hashiguchi A, Yukawa K, Nanjo Y, Hiraga S, Nakamura T, Nishizawa K, Komatsu S (2012) Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnol 29:301–305

    CAS  Google Scholar 

  • Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT (2017) Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot 68(8):1835–1849

    CAS  PubMed  Google Scholar 

  • Van Nguyen L, Takahashi R, Githiri SM, Rodriguez TO, Tsutsumi N, Kajihara S, Mochizuki T (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theor Appl Genet 130:743–755

    CAS  PubMed  Google Scholar 

  • Vandoorne B, Descamps C, Mathieu AS, Van den Ende W, Vergauwen R, Javaux M, Lutts S (2014) Long term intermittent flooding stress affects plant growth and inulin synthesis of Cichorium intybus (var. sativum). Plant Soil 376:291–305

    CAS  Google Scholar 

  • VanToai TT, Hoa TTC, Hue NTN, Nguyen HT, Shannon GJ, Rahman MA (2010) Flooding tolerance of soybean [Glycine max (L.) merr.] germplasm from Southeast Asia under field and screen-house environments. Open Agric J 4:38–46

    Google Scholar 

  • VanToai TT, Lee JD, Goulart PFP, Shannon GJ, Alves JD, Nguyen HT, Yu O, Rahman M, Islam R (2012) Soybean (Glycine max L. Merr.) seed composition response to soil flooding stress. J Food Agric Environ 10(1):795–804

    CAS  Google Scholar 

  • VanToai TT, St. Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Google Scholar 

  • Verstraeten I, Schotte S, Geelen D (2014) Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci 5:495. https://doi.org/10.3389/fpls.2014.00495

    Article  PubMed  PubMed Central  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206(1):57–73

    CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Sasidharan R (2013) Ethylene–and oxygen signalling–drive plant survival during flooding. Plant Biol 15(3):426–435

    CAS  PubMed  Google Scholar 

  • Wang X, Deng Z, Zhang W, Meng Z, Chang X, Lv M (2017) Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS One 12(1):e0169029. https://doi.org/10.1371/journal.pone.0169029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner LH (2010) Oxygen transport in waterlogged plants. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Berlin, pp 3–22

    Google Scholar 

  • Wollmer AC, Pitann B, Mühling KH (2018) Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J Agron Crop Sci 204(2):165–174

    CAS  Google Scholar 

  • Wu C, Zeng A, Chen P, Florez Palacios L, Hummer W, Mokua J, Klepadlo M, Yan L, Ma Q, Cheng Y (2017) An effective field screening method for flood tolerance in soybean. Plant Breed 136:710–719

    CAS  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856

    CAS  PubMed  Google Scholar 

  • Yaduvanshi NPS, Setter TL, Sharma SK, Singh KN, Kulshreshtha N (2010) Waterlogging effects on wheat yield, redox potantial, manganese and iron in different soils of India. Paper presented at the 19th world congress of soil Science, 1-6 August, Brisbane, Australia, pp 45–48

    Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crop Res 152:8–16. https://doi.org/10.1016/j.fcr.2012.12.008

    Article  Google Scholar 

  • Yamuangmorn S, Rinsinjoy R, Lordkaew S, Dell B (2020) Responses of grain yield and nutrient content to combined zinc and nitrogen fertilizer in upland and wetland rice varieties grown in waterlogged and well-drained condition. J Soil Sci Plant Nutr 20(4):2112–2122

    CAS  Google Scholar 

  • Yiu JC, Liu CW, Fang DYT, Lai YS (2009) Waterlogging tolerance of welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol Biochem 47(8):710–716

    CAS  PubMed  Google Scholar 

  • Yordanova RY, Popova LP (2007) Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant 29(6):535–541

    CAS  Google Scholar 

  • Youn JT, Van K, Lee JE, Kim WH, Yun HT, Kwon YU, Ryu YH, Lee SH (2008) Waterlogging effects on nitrogen accumulation and N2 fixation of supernodulating soybean mutants. J Crop Sci Biotechnol 11:111–118

    Google Scholar 

  • Zhang G, Tanakamaru K, Abe J, Morita S (2007) Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiol Plant 29:171–176

    Google Scholar 

  • Zhang R, Zhou Y, Yue Z, Chen X, Cao X, Xu X, Xing Y, Jiang B, Ai X, Huang R (2019) Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica 57(4):1076–1083

    CAS  Google Scholar 

  • Zhao T, Aleem M, Sharmin RA (2018) Adaptation to water stress in soybean: morphology to genetics. In: Andjelkovic V (ed) Plant, abiotic stress and responses to climate change. Intech Open, London, pp 33–68

    Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    CAS  PubMed  Google Scholar 

  • Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K (2020) Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem 148:228–236

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sathi, K.S., Masud, A.A.C., Anee, T.I., Rahman, K., Ahmed, N., Hasanuzzaman, M. (2022). Soybean Plants Under Waterlogging Stress: Responses and Adaptation Mechanisms. In: Hasanuzzaman, M., Ahammed, G.J., Nahar, K. (eds) Managing Plant Production Under Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-5059-8_5

Download citation

Publish with us

Policies and ethics