Skip to main content
Log in

The alpha-helix, an overlooked molecular motor

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary.

At first sight the alpha-helix appears as a rigid scaffold braced by hydrogen bonds nearly parallel to the helix axis. Looked at more closely it turned out to be highly dynamic and able to transform chemical into mechanical energy. The hydrogen bonds are fairly weak and compliant bonds. Their length, usually between 0.267 and 0.291 nm (mean value, 0.28 nm), depends on the interaction of the side chains. The most important strong interaction is the electrostatic repelling force between equally charged side chains (Glu, Asp, Lys+, Arg+), well known by experiments with polyamino acids. In proteins with different amino acids, repelling forces between charged side chains work in the axial direction and stretch the hydrogen bonds. Extreme shortening of the hydrogen bonds occurs when ions, e.g., Ca2+, H+, or PO3 , are added and discharge side chains. This means a cooperative pitch decrease of the alpha-helix (pitch range between 0.52 and more than 0.55 nm; mean value, 0.54 nm). This pitch change is absolutely connected by steric reasons with torque generation and torsional rotations, as demonstrated by molecular and tubular alpha-helix models. Thus, charged alpha-helices are molecular motors propelled by the electrostatic energy of added ions. The motor effect is most striking with highly charged alpha-helical coiled coils, e.g., tropomyosin, myosin, and alpha-actinin that can rotate actin filaments by winding and unwinding. For example, the shortening of muscle depends on the sliding (drilling) motion of the Ca2+-activated helical actin filaments into the cross-bridges of the A-band. Here, models are presented for the in vitro sliding of actin filaments and for cytoplasmic streaming by winding and unwinding of myosin chains, and for membrane proteins that contain nonhelical domains between membrane-penetrating alpha-helices. They may transport molecules by the described torsional rotations if they perform supercoiling. Winding and supercoiling can lead to displacement of bound ions and to a feed-back-regulated oscillation between two different coiling stages E1 and E2 that explain “eversion”. The models need the torque for 1–2 rotations. They explain active and passive transports, the driving-effects of ion gradients, ATP hydrolysis by unwinding, ATP synthesis by winding up of the supercoils, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BC Abbott XM Aubert (1951) ArticleTitleChanges of energy in a muscle during very slow stretches. Proc R Soc B 138 104–117

    Google Scholar 

  • – – (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117: 77–86

  • – – Hill AV (1951) The absorption of work by a muscle stretched during a single twitch or a short tetanus. Proc R Soc B 139: 86–104

    Google Scholar 

  • NS Allen (1980) ArticleTitleCytoplasmic streaming and transport in the characean alga Nitella. Can J Bot 58 786–796

    Google Scholar 

  • RD Allen DG Weiss JH Hayden DT Brown H Fujiwake M Simpson (1985) ArticleTitleGliding, movement and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100 1736–1752 Occurrence Handle2580845 Occurrence Handle10.1083/jcb.100.5.1736 Occurrence Handle1:STN:280:DyaL2M7ot1yhtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • C Bacchiocchi SS Lehrer (2002) ArticleTitleCa2+-induced movement of tropomyosin in skeletal muscle thin filaments observed by multi-site FRET. Biophys J 82 1524–1536 Occurrence Handle11867466 Occurrence Handle1:CAS:528:DC%2BD38Xit1KjtLk%3D

    PubMed  CAS  Google Scholar 

  • M Bárány (1967) ArticleTitleATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50 197–218 Occurrence Handle4227924

    PubMed  Google Scholar 

  • A Blanchard V Ohanian D Critchley (1989) ArticleTitleThe structure and function of alpha-actinin. J Muscle Res Cell Motil 10 280–289 Occurrence Handle2671039 Occurrence Handle10.1007/BF01758424 Occurrence Handle1:CAS:528:DyaL1MXmt1Ohtb0%3D

    Article  PubMed  CAS  Google Scholar 

  • ER Blout M Idelson (1956) ArticleTitlePolypeptides VI. Poly-α-L-Glutamic acid: preparation and helix-coil conversion. J Am Chem Soc 78 497–498 Occurrence Handle1:CAS:528:DyaG28XjtVOhug%3D%3D

    CAS  Google Scholar 

  • J Borejdo DS Ushakov R Moreland I Akopova Y Reshetnyak LD Saraswat K Kamm S Lowey (2001) ArticleTitleThe powerstroke causes changes in the orientation and mobility of the termini of essential light chain 1 of myosin. Biochemistry (Washington) 40 3796–3803 Occurrence Handle1:CAS:528:DC%2BD3MXhsFOqt78%3D

    CAS  Google Scholar 

  • JL Buchbinder RJ Fletterick (1996) ArticleTitleRole of the active site gate of glycogenphosphorylase in allosteric inhibition and substrate binding. J Biol Chem 271 22305–22309 Occurrence Handle8798388 Occurrence Handle1:CAS:528:DyaK28Xlslait7c%3D

    PubMed  CAS  Google Scholar 

  • DLD Caspar C Cohen W Longley (1969) ArticleTitleTropomyosin: crystal structure, polymorphism and molecular interactions. J Mol Biol 41 87–107 Occurrence Handle5803288 Occurrence Handle10.1016/0022-2836(69)90128-4 Occurrence Handle1:CAS:528:DyaF1MXktVSit7c%3D

    Article  PubMed  CAS  Google Scholar 

  • C Cohen DLD Caspar DAD Parry RM Lucas (1971) ArticleTitleTropomyosin crystal dynamics. Cold Spring Harbor Symp Quant Biol 36 205–236 Occurrence Handle1:CAS:528:DyaE38XhtlOntbY%3D

    CAS  Google Scholar 

  • C Cohen DLD Caspar JP Johnson K Nauss SS Margossian DAD Parry (1973) ArticleTitleTropomyosin-troponin assembly. Cold Spring Harbor Symp Quant Biol 37 287–297 Occurrence Handle1:CAS:528:DyaE3sXktVWltr8%3D

    CAS  Google Scholar 

  • RB Corey L Pauling (1955) ArticleTitleThe configuration of polypeptide chains in proteins. Instituto Lombardo (Rend Sci) 89 10–37 Occurrence Handle1:CAS:528:DyaG2sXjvFGruw%3D%3D

    CAS  Google Scholar 

  • P Doty A Wada JT Yang ER Blout (1957) ArticleTitlePolypeptides VIII. Molecular configurations of poly-L-glutamic acid in water-dioxane solution. J Polym Sci 23 851–861 Occurrence Handle10.1002/pol.1957.1202310429 Occurrence Handle1:CAS:528:DyaG2sXms1Cisw%3D%3D

    Article  CAS  Google Scholar 

  • KA Edman (1975) ArticleTitleMechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol 246 255–275 Occurrence Handle1079534 Occurrence Handle1:STN:280:DyaE2M7ntF2nsQ%3D%3D

    PubMed  CAS  Google Scholar 

  • – (1980) Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres. Acta Physiol Scand 109: 15–26

  • – (1996) Fatique vs. shortening induced deactivation in striated muscle. Acta Physiol Scand 156: 183–192

  • – Caputo C, Lou F (1993) Depression of tetanic force induced by loaded shortening of frog muscle fibres. J Physiol 466: 535–552

    Google Scholar 

  • Edsall JT (1950) In: A discussion on muscular contraction and relaxation: their physical and chemical basis (ed. Hill AV). Proc R Soc B 137: 82–85

  • I Foissner R Jarosch (1981) ArticleTitleThe motion mechanics of Nitella filaments (cytoplasmic streaming): their imitation in detail by screw-mechanical models. Cell Motil 1 371–385 Occurrence Handle10.1002/cm.970010308

    Article  Google Scholar 

  • Fraser RDB, Macrae TP (1973) Conformation in fibrous proteins. Academic Press, London

  • S Galler K-H Hilber (1994) ArticleTitleUnloaded shortening of skinned mammalian skeletal muscle fibres: effect of the experimental approach and passive force. J Muscle Res Cell Motil 15 400–412 Occurrence Handle7806634 Occurrence Handle1:STN:280:DyaK2M7gsFejtg%3D%3D

    PubMed  CAS  Google Scholar 

  • – Schmitt TL, Pette D (1994) Stretch activation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres. J Physiol 478: 513–521

    Google Scholar 

  • HS Gasser AV Hill (1924) ArticleTitleThe dynamics of muscular contraction. Proc R Soc B 96 398–437

    Google Scholar 

  • Gillis JM, Maréchal G (1969) Resynthesis of ATP in glycerinated fibres stretched during contraction. In Abstracts of the 3rd International Biophysics Congress, 11S.8, p 271

  • AM Gordon EB Ridgway (1987) ArticleTitleExtra calcium on shortening in barnacle muscle. Is the decrease in calcium binding related to decreased cross-bridge attachment, force or length? J Gen Physiol 90 321–340 Occurrence Handle3655718 Occurrence Handle10.1085/jgp.90.3.321 Occurrence Handle1:CAS:528:DyaL2sXlslegurg%3D

    Article  PubMed  CAS  Google Scholar 

  • – – (1990) Declining phase of the calcium transient produces biphasic changes in calcium binding to the activating sites. J Gen Physiol 96: 1013–1035

  • L Hermann (1871) ArticleTitleÜber die Abnahme der Muskelkraft während der Contraction. Pflügers Arch 4 195–201

    Google Scholar 

  • W Herzog TR Leonard (1997) ArticleTitleDepression of cat soleus forces following isokinetic shortening. J Biomech 30 865–872 Occurrence Handle9302608 Occurrence Handle1:STN:280:DyaK2svkvVWqug%3D%3D

    PubMed  CAS  Google Scholar 

  • – – Wu JZ (1998) Force depression following skeletal muscle shortening is long lasting. J Biomech 31: 1163–1168

    Google Scholar 

  • AV Hill (1938) ArticleTitleThe heat of shortening and the dynamic constants of muscle. Proc R Soc B 126 136–195

    Google Scholar 

  • – (1970) First and last experiments in muscle mechanism. Cambridge University Press, Cambridge

  • – Howarth JV (1960) The reversal of chemical reactions in contracting muscle during an applied stretch. Proc R Soc B 151: 169–193

    Google Scholar 

  • A Houdusse AG Szent-Gyorgyi C Cohen (2000) ArticleTitleThree conformational states of scallop myosin S1. Proc Natl Acad Sci USA 97 11238–11243 Occurrence Handle11016966 Occurrence Handle10.1073/pnas.200376897 Occurrence Handle1:CAS:528:DC%2BD3cXnsF2rtbw%3D

    Article  PubMed  CAS  Google Scholar 

  • R Jarosch (1956a) ArticleTitleAktiv bewegungsfähige Plasmaelemente und Chloroplastenrotation bei Characeen. Anz Math-Naturwiss Kl Österr Akad Wiss 6 58–60

    Google Scholar 

  • – (1956b) Plasmaströmung und Chloroplastenrotation bei Characeen. Phyton (Argentina) 6: 87–107

  • – (1963) Grundlagen einer Schrauben-Mechanik des Protoplasmas. Protoplasma 57: 448–500

  • – (1964) Screw-mechanical basis of protoplasmic movement. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, New York, pp 599–622

  • – (1969) Das sterische Verhalten der Alpha-Helix. Z Naturforsch 24B: 672–680

  • – (1970) Über das sterische Verhalten einer unterbrochenen Alpha-Helix. Z Naturforsch 25B: 595–599

  • – (1976) Dynamisches Verhalten der Actinfibrillen von Nitella auf Grund schneller Filament-Rotation. Biochem Physiol Pflanzen 170: 111–131

  • – (1979) The torsional movement of tropomyosin and the molecular mechanism of the thin filament motion. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organization. University of Tokyo Press, Tokyo, pp 291–319

  • – (1985) The filament rotation model: molecular and screw-mechanical details. In: Alia EE, Arena N, Russo MA (eds) Contractile proteins in muscle and non-muscle cell systems. Praeger, New York, pp 239–251

  • – (1986a) The thin filament rotation model of muscle contraction. In: Frey M, Freilinger G (eds) 2nd Vienna muscle symposium proceedings. Facultas Universitätsverlag, Wien, pp 1–7

  • – (1986b) A model for the molecular basis of contractility and sliding as demonstrated by helix models. Cell Motil Cytoskeleton 6: 229–236

  • – (1987a) Mechanics and hydrodynamics of rotating filaments. In: Bereiter-Hahn J, Anderson OR, Reif W-E (eds) Cytomechanics. Springer, Berlin Heidelberg New York Tokyo, pp 54–75

  • – (1987b) Screw-mechanical models for the action of actin- and tubulin-containing filaments, In: Wohlfarth-Bottermann KE (ed) Nature and function of cytoskeletal proteins in motility and transport. Gustav Fischer, Stuttgart New York, pp 231–249 (Progress in zoology, vol 34)

  • – (1988a) The twisting of α-helical loops results in a general model for an ion-driven carrier. J Muscle Res Cell Motil 9: 76–77

  • – (1988b) The alpha-helix – an overlooked molecular energy converter. J Muscle Res Cell Motil 9: 77

  • – (1989) Screw-mechanical models related to cytoplasmic streaming. Protoplasma Suppl 1: 15–26

  • – (1992) Wave-like motions of cytoskeletal fibrils and their mechanics. Acta Histochem Suppl 41: 271–290

  • – (2000) Muscle force arises by actin filament rotation and torque in the Z-filaments. Biochem Biophys Res Commun 270: 677–682

  • – Foissner I (1982) A rotation model for microtubule and filament sliding. Eur J Cell Biol 26: 295–302

    Google Scholar 

  • BR Jewell DR Wilkie (1958) ArticleTitleAn analysis of the mechanical components in frog’s striated muscle. J Physiol 143 515–540 Occurrence Handle13588571 Occurrence Handle1:STN:280:DyaG1M%2Fhsl2mtw%3D%3D

    PubMed  CAS  Google Scholar 

  • WK Jordan G Oster (1948) ArticleTitleOn the nature of the interaction between actomyosin and ATP. Science 108 188 Occurrence Handle1:CAS:528:DyaH1cXjvVOjtg%3D%3D Occurrence Handle17821150

    CAS  PubMed  Google Scholar 

  • B Kachar R Urrutia MN Rivolta MA McNiven (1993) ArticleTitleMyosin-mediated vesicular transport in extruded cytoplasm of characean algae cells. Methods Cell Biol 39 179–190 Occurrence Handle8246797 Occurrence Handle1:CAS:528:DyaK2cXht1yqt70%3D

    PubMed  CAS  Google Scholar 

  • E Kamitsubo (1966) ArticleTitleMotile protoplasmic fibrils in cells of characeae. I. Movement of fibrillar loops. Proc Japan Acad 42 507–511

    Google Scholar 

  • – (1972) Motile protoplasmic fibrils in cells of characeae. Protoplasma 74: 53–70

  • Kamiya N (1962) Protoplasmic streaming. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie XVII/2. Springer, Berlin Heidelberg New York, pp 979–1035

  • Katayama E (1998) Electron microscopy coupled with quick freezing. In: Sugi H (ed) Current methods in muscle physiology. Oxford University Press, Oxford, pp 287–301

  • A Katchalsky (1949) ArticleTitleRapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experientia 5 319 Occurrence Handle10.1007/BF02172636 Occurrence Handle1:CAS:528:DyaH1MXkvFWisw%3D%3D Occurrence Handle18138361

    Article  CAS  PubMed  Google Scholar 

  • M Kress HE Huxley AR Faruqi J Hendrix (1986) ArticleTitleStructural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol 188 325–342 Occurrence Handle3735425 Occurrence Handle10.1016/0022-2836(86)90158-0 Occurrence Handle1:CAS:528:DyaL28Xit1alsLo%3D

    Article  PubMed  CAS  Google Scholar 

  • W Kuhn (1949) ArticleTitleReversible Dehnung und Kontraktion bei Änderung der Ionisation eines Netzwerks polyvalenter Fadenmolekülionen. Experientia 5 318 Occurrence Handle10.1007/BF02172635 Occurrence Handle1:CAS:528:DyaH1MXkvFWmug%3D%3D Occurrence Handle18147803

    Article  CAS  PubMed  Google Scholar 

  • – (1952) Einfluss elektrischer Ladungen auf das Verhalten von Hochpolymeren. Z Angew Phys 4: 108

  • W Kuhn (1958) ArticleTitleSize and shape changes of polyelectrolytes: conversion of chemical into mechanical energy. Nature 182 762

    Google Scholar 

  • – Hargitay B (1951) Muscle-simulating performance of work by synthetic polymers. Z Elektrochem Angew Phys Chem 55: 490

    Google Scholar 

  • – – Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165: 514

    Google Scholar 

  • ID Kuntz GM Grippen PA Kollman D Kimelman (1976) ArticleTitleCalculation of protein tertiary structure. J Mol Biol 106 983–994 Occurrence Handle978745 Occurrence Handle10.1016/0022-2836(76)90347-8 Occurrence Handle1:CAS:528:DyaE28XlslejurY%3D

    Article  PubMed  CAS  Google Scholar 

  • S Kurihara K Komukai (1995) ArticleTitleTension-dependent changes of the intracellular Ca2+ transients in ferret ventricular muscles. J Physiol 489 617–625 Occurrence Handle8788928 Occurrence Handle1:CAS:528:DyaK28XkvFKjug%3D%3D

    PubMed  CAS  Google Scholar 

  • Kuroda K (1964) Behaviour of naked cytoplasmic drops isolated from plant cells. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, New York, pp 31–41

  • Lehninger AL (1975) Biochemie. Verlag Chemie, Weinheim

  • A Levin J Wyman (1927) ArticleTitleThe viscous elastic properties of muscle. Proc R Soc B 101 218–243 Occurrence Handle10.1098/rspb.1927.0014

    Article  Google Scholar 

  • TM Lohman K Thorn RD Vale (1998) ArticleTitleStaying on track: common features of DNA helicases and microtubuli motors. Cell 93 9–12 Occurrence Handle9546385 Occurrence Handle10.1016/S0092-8674(00)81139-3 Occurrence Handle1:CAS:528:DyaK1cXisFGitrk%3D

    Article  PubMed  CAS  Google Scholar 

  • HG Mannherz RS Goody (1976) ArticleTitleProteins of contractile systems. Annu Rev Biochem 46 427–465

    Google Scholar 

  • G Maréchal L Plaghki (1979) ArticleTitleThe deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J Gen Physiol 73 453–467 Occurrence Handle312915

    PubMed  Google Scholar 

  • JM Mason KM Arndt (2004) ArticleTitleCoiled-coil domains: stability, specifity and biological implications. Chembiochem 5 170–176 Occurrence Handle14760737 Occurrence Handle10.1002/cbic.200300781 Occurrence Handle1:CAS:528:DC%2BD2cXhsFKgsLk%3D

    Article  PubMed  CAS  Google Scholar 

  • J-F Ménétret W Hofmann RR Schröder G Rapp RS Goody (1991) ArticleTitleTime-resolved cryoelectron microscopic study of the dissociation of actomyosin induced by photolysis of photolabile nucleotides. J Mol Biol 219 139–144 Occurrence Handle2038049

    PubMed  Google Scholar 

  • KH Meyer (1929) ArticleTitleÜber Feinbau, Festigkeit und Kontraktilität tierischer Gewebe. Biochem Z 214 253–281 Occurrence Handle1:CAS:528:DyaA3cXlsVaq

    CAS  Google Scholar 

  • Y Mitsui Y Iitaka M Tsuboi (1967) ArticleTitleSide-chain interaction between alpha-helices of polybenzyl-L- and D-glutamate. J Mol Biol 24 15–28 Occurrence Handle10.1016/0022-2836(67)90085-X Occurrence Handle1:CAS:528:DyaF2sXptFKmug%3D%3D

    Article  CAS  Google Scholar 

  • MF Morales J Botts (1952) ArticleTitleA model for the elementary process in muscle action. Arch Biochem Biophys 37 283–300 Occurrence Handle10.1016/0003-9861(52)90193-8 Occurrence Handle1:CAS:528:DyaG3sXktFOn

    Article  CAS  Google Scholar 

  • RL Moss (1986) ArticleTitleEffects of shortening velocity of rabbit skeletal muscle due to variation in the level of thin-filament activation. J Physiol 377 487–505 Occurrence Handle3795099 Occurrence Handle1:STN:280:DyaL2s%2Fos1Cmtg%3D%3D

    PubMed  CAS  Google Scholar 

  • Nagai R, Hayama T (1979) Ultrastructural aspects of cytoplasmic streaming in characean cells. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organization. University of Tokyo Press, Tokyo, pp 321–337

  • A Oplatka (1997) ArticleTitleCritical review of the swinging cross bridge theory and of the cardinal active role of water in muscle contraction. Crit Rev Biochem Mol Biol 32 307–360 Occurrence Handle9307875 Occurrence Handle1:STN:280:DyaK2svltlWisQ%3D%3D

    PubMed  CAS  Google Scholar 

  • – (1998) Are rotors at the heart of all biological motors? Biochem Biophys Res Commun 246: 301–306

  • A Orlova EH Egelman (2000) ArticleTitleF-actin retains a memory of angular order. Biophys J 78 2180–2185 Occurrence Handle10733996 Occurrence Handle1:CAS:528:DC%2BD3cXisVWnsbk%3D Occurrence Handle10.1016/S0006-3495(00)76765-8

    Article  PubMed  CAS  Google Scholar 

  • Pauling L (1968) Die Natur der chemischen Bindung, 3rd edn. Verlag Chemie, Weinheim

  • – Corey RB (1951a) Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc Natl Acad Sci USA 37: 235–240

    Google Scholar 

  • – – (1951b) The structure of synthetic polypeptides. Proc Natl Acad Sci USA 37: 241–250

  • – – (1953) Compound helical configurations of polypeptide chains: structure of proteins of the alpha-keratin type. Nature 171: 59–62

  • – – Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37: 205–211

    Google Scholar 

  • MF Perutz AJ Wilkinson M Paoli GG Dodson (1998) ArticleTitleThe stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu Rev Biophys Biomol Struct 27 1–34 Occurrence Handle9646860 Occurrence Handle10.1146/annurev.biophys.27.1.1 Occurrence Handle1:CAS:528:DyaK1cXktVSlt7s%3D

    Article  PubMed  CAS  Google Scholar 

  • MG Pryor (1950) ArticleTitleMechanical properties of fibres and muscles. Prog Biophys Biophys Chem 1 216–268 Occurrence Handle1:CAS:528:DyaG3MXjvFSg

    CAS  Google Scholar 

  • JA Rall E Homsher A Wallner WFHM Mommaerts (1976) ArticleTitleA temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscle. J Gen Physiol 68 13–27 Occurrence Handle1084912 Occurrence Handle10.1085/jgp.68.1.13 Occurrence Handle1:CAS:528:DyaE28XkvFSmt7o%3D

    Article  PubMed  CAS  Google Scholar 

  • CA Rebello RD Ludescher (1999) ArticleTitleDifferential dynamic behaviour of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP. Biochemistry (Washington) 38 13288–13295 Occurrence Handle1:CAS:528:DyaK1MXlvVGiuro%3D

    CAS  Google Scholar 

  • RE Reid J Gariépy AK Saund RS Hodges (1981) ArticleTitleCalcium-induced protein folding. Structure-affinity relationships in synthetic analogs of helix-loop-helix calcium binding unit. J Biol Chem 256 2742–2751 Occurrence Handle7204374 Occurrence Handle1:CAS:528:DyaL3MXhs12ktr0%3D

    PubMed  CAS  Google Scholar 

  • SJ Remington (1992) ArticleTitleStructure and mechanism of citrate synthase. Curr Top Cell Regul 33 209–229 Occurrence Handle1499334 Occurrence Handle1:CAS:528:DyaK38XkvVGlsbk%3D

    PubMed  CAS  Google Scholar 

  • EB Ridgway AM Gordon (1984) ArticleTitleMuscle calcium transient: effect of post-stimulus length changes in single muscle fibres. J Gen Physiol 83 75–103 Occurrence Handle6319546 Occurrence Handle10.1085/jgp.83.1.75 Occurrence Handle1:CAS:528:DyaL2cXhtVSks74%3D

    Article  PubMed  CAS  Google Scholar 

  • A Rose I Meier (2004) ArticleTitleScaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. Cell Mol Life Sci 61 1996–2009 Occurrence Handle15316650 Occurrence Handle10.1007/s00018-004-4039-6 Occurrence Handle1:CAS:528:DC%2BD2cXotVyjsLk%3D

    Article  PubMed  CAS  Google Scholar 

  • DJ Schuller GA Grant LJ Banaszak (1995) ArticleTitleThe allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol 2 69–76 Occurrence Handle7719856 Occurrence Handle10.1038/nsb0195-69 Occurrence Handle1:CAS:528:DyaK2MXivF2lsLw%3D

    Article  PubMed  CAS  Google Scholar 

  • Schwann TH (1837) In: Müller J (ed) Handbuch der Physiologie des Menschen, vol 2. J Hölscher, Coblenz, pp 59–62

  • WM Shih Gryczynski JR Lakowicz JA Spudich (2000) ArticleTitleA FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102 683–694 Occurrence Handle11007486 Occurrence Handle10.1016/S0092-8674(00)00090-8 Occurrence Handle1:CAS:528:DC%2BD3cXmsFWitLY%3D

    Article  PubMed  CAS  Google Scholar 

  • JA Spudich J Finer B Simmons K Ruppel B Patterson T Uyeda (1995) ArticleTitleMyosin structure and function. Cold Spring Harbor Symp Quant Biol 60 783–791 Occurrence Handle8824453 Occurrence Handle1:CAS:528:DyaK28XkvVamsbw%3D

    PubMed  CAS  Google Scholar 

  • H Sugi T Tsuchiya (1988) ArticleTitleStiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. J Physiol 407 215–229 Occurrence Handle3256616 Occurrence Handle1:STN:280:DyaL1Mzot1eiug%3D%3D

    PubMed  CAS  Google Scholar 

  • R Tirosh WZ Low A Oplatka (1990) ArticleTitleTranslational motion of actin filaments in presence of heavy meromyosin and MgATP as measured by Doppler broading of laser light scattering. Biochim Biophys Acta 1037 274–280 Occurrence Handle2178685 Occurrence Handle1:CAS:528:DyaK3cXhslChsrs%3D

    PubMed  CAS  Google Scholar 

  • YY Toyoshima SJ Kron EM McNally KR Niebling C Toyoshima JA Spudich (1987) ArticleTitleMyosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328 536–539 Occurrence Handle2956522 Occurrence Handle10.1038/328536a0 Occurrence Handle1:CAS:528:DyaL2sXlsV2lsrg%3D

    Article  PubMed  CAS  Google Scholar 

  • RD Vale (2003) ArticleTitleThe molecular motor toolbox for intracellular transport. Cell 112 467–480 Occurrence Handle12600311 Occurrence Handle10.1016/S0092-8674(03)00111-9 Occurrence Handle1:CAS:528:DC%2BD3sXhs1SnsLo%3D

    Article  PubMed  CAS  Google Scholar 

  • – Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288: 88–95

    Google Scholar 

  • AW Volkmann (1873) ArticleTitleVon den Beziehungen der Elasticität zur Muskelthätigkeit. Pflügers Arch 7 1–18

    Google Scholar 

  • RE Williamson (1979) ArticleTitleFilaments associated with the endoplasmatic reticulum in the streaming cytoplasm of Chara corallina. Eur J Cell Biol 20 177–183 Occurrence Handle574820 Occurrence Handle1:CAS:528:DyaL3cXnt12mug%3D%3D

    PubMed  CAS  Google Scholar 

  • E Wöhlisch (1940) ArticleTitleMuskelphysiologie vom Standpunkt der kinetischen Theorie der Hochelastizität und der Entspannungshypothese des Kontraktionsmechanismus. Naturwissenschaften 28 305–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence and reprints: Linzerstrasse 72, 4810 Gmunden, Austria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarosch, R. The alpha-helix, an overlooked molecular motor. Protoplasma 227, 37–46 (2005). https://doi.org/10.1007/s00709-005-0136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-005-0136-0

Navigation