Skip to main content
Log in

Investigation of shear forces in twisted carbon nanotube bundles using a structural mechanics approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Producing continuous macroscopic carbon nanotube fibers with mechanical features close to individual CNTs remains a major challenge. In this paper, the mesoscale mechanics of twisted CNT bundles using structural mechanics method by considering inter-tube interactions is investigated. For this purpose, the carbon nanotube structure and the respective coordinates of its atoms were extracted from Nanotube Modeler software. Based on these data, the carbon nanotube bundle models were created using ABAQUS scripting environment. To investigate the shear forces in the mesoscale model, the middle CNT of a bundle containing seven SWCNTs was pulled-out. Consequently, deformation mechanisms and an optimal twisting angle were determined. The simulation results from ABAQUS/CAE finite element solver code were verified by a full atomic molecular dynamics models published previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  2. Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216(127), 281–289 (2011)

    Article  Google Scholar 

  3. Demczyk, B. G., Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, vol. 334, pp. 173–178, 2002.

  4. Ostanin, I., Ballarini, R., Dumitrică, T.: Distinct element method for multiscale modeling of cross-linked carbon nanotube bundles: From soft to strong nanomaterials. J. Mater. Res. 30(01), 19–25 (2014)

    Article  Google Scholar 

  5. Mirzaeifar, R., Qin, Z., Buehler, M.J.: Mesoscale mechanics of twisting carbon nanotube yarns. Nanoscale 7(12), 5435–5445 (2015)

    Article  Google Scholar 

  6. Tran, C.D., Humphries, W., Smith, S.M., Huynh, C., Lucas, S.: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47(11), 2662–2670 (2009)

    Article  Google Scholar 

  7. De Juan, A. et al.: Mechanically interlocked single-wall carbon nanotubes. Angewandte Chemie 53, 1–8 (2014)

  8. Kis, A., et al.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3(3), 153–157 (2004)

    Article  Google Scholar 

  9. Krasheninnikov, A.V., Banhart, F.: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6(10), 723–733 (2007)

    Article  Google Scholar 

  10. O’Brien, N.P., McCarthy, M.A., Curtin, W.A.: Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon 51(1), 173–184 (2013)

    Article  Google Scholar 

  11. Yu, M.-F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    Article  Google Scholar 

  12. Zhao, Z.L., Zhao, H.P., Wang, J.S., Zhang, Z., Feng, X.Q.: Mechanical properties of carbon nanotube ropes with hierarchical helical structures. J. Mech. Phys. Solids 71(1), 64–83 (2014)

    Article  MathSciNet  Google Scholar 

  13. Pipes, R.B., Hubert, P.: Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62(3), 419–428 (2002)

    Article  Google Scholar 

  14. Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997)

    Article  Google Scholar 

  15. Zhang, X., et al.: Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3(2), 244–248 (2007)

    Article  Google Scholar 

  16. Liu, K., Zhu, F., Liu, L., Sun, Y., Fan, S., Jiang, K.: Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes. Nanoscale 4(11), 3389 (2012)

    Article  Google Scholar 

  17. Hersam, M.C.: Progress towards monodisperse single-walled carbon nanotubes. Nat Nano 3(7), 387–394 (2008)

    Article  Google Scholar 

  18. Tajima, N., Watanabe, T., Morimoto, T., Kobashi, K.: Nanotube length and density dependences of electrical and mechanical properties of carbon nanotube fibres made by wet spinning. Carbon 152, 1–6 (2019)

    Article  Google Scholar 

  19. Perumal, L., Leng, L. T. , C. P. Tso.: Nanoscale continuum modelling of carbon nanotubes by polyhedral finite elements, pp. 41–48 (2016).

  20. Li, Y., Sun, B., Sockalingam, S., Pan, Z., Lu, W., Chou, T.: Influence of transverse compression on axial electromechanical properties of carbon nanotube fibers. Mater. Des. 188, 108463 (2020)

    Article  Google Scholar 

  21. Fang, S., Zhang, M., Zakhidov, A.A., Baughman, R.H.: Structure and process-dependent properties of solid-state spun carbon nanotube yarns. J. Phys. Condens. Matter. 22(33), 334221 (2010)

    Article  Google Scholar 

  22. Miao, M., McDonnell, J., Vuckovic, L., Hawkins, S.C.: Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon 48(10), 2802–2811 (2010)

    Article  Google Scholar 

  23. Ostanin, I., Ballarini, R., Potyondy, D., Dumitricǎ, T.: A distinct element method for large scale simulations of carbon nanotube assemblies. J. Mech. Phys. Solids 61(3), 762–782 (2013)

    Article  MathSciNet  Google Scholar 

  24. Sugimoto, Y., Shioya, M., Matsumoto, H., Minagawa, M., Tanioka, A.: Structure changes during tensile deformation and mechanical properties of a twisted carbon nanotube yarn. Carbon 60, 193–201 (2013)

    Article  Google Scholar 

  25. Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)

    Article  Google Scholar 

  26. Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36(5), 468–477 (2005)

    Article  Google Scholar 

  27. Hu, N., Fukunaga, H., Lu, C., Kameyama, M., Yan, B.: Prediction of elastic properties of carbon nanotube reinforced composites. Proc. Roy. Soc. A. Math. Phys. Eng. Sci. 461(2058), 1685–1710 (2005)

    Google Scholar 

  28. Kalamkarov, A.L., Georgiades, A.V., Rokkam, S.K., Veedu, V.P., Ghasemi-Nejhad, M.N.: Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43(22), 6832–6854 (2006)

    Article  Google Scholar 

  29. Parvaneh, V., Shariati, M., Majd Sabeti, A. M.: Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach. Euro. J. Mech. A/Solids, 28(6), 1072–1078 (2009)

  30. Zadeh, A. L., Shariati, M., Zadeh, J. L.: Buckling analysis of carbon nanotube bundles under torsional loading via a structural mechanics model, pp. 16–19 (2012).

  31. Rappé, A.K.K., Casewit, C.J.J., Colwell, K.S.S., Goddard, W.A., III., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)

    Article  Google Scholar 

  32. Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65(23), 235430 (2002)

    Article  Google Scholar 

  33. Cornell, W.D., et al.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  Google Scholar 

  34. Odegard, G. M., Gates, T. S., Nicholson, L. M., Wise, K. E.: Equivalent-continuum modeling of nano-structured materials. Comp. Sci. Tech. 62, no. 14, pp. 1869–1880 (2002)

  35. Torabi, H., Shariati, M., Sedaghat, E., Zadeh, A.L.: Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48(8), 1959–1974 (2013)

    Article  Google Scholar 

  36. Parvaneh, V., Shariati, M., Torabi, H.: Frequency analysis of perfect and defective SWCNTs. Comput. Mater. Sci. 50(7), 2051–2056 (2011)

    Article  Google Scholar 

  37. Lashkari Zadeh, A., Shariati, M., Zorabi, T.: Buckling analysis of carbon nanotube bundles under axial compressive, bending and torsional loadings via a structural mechanics model. J. Phys. Chem. Solids 73(11), 1282–1289 (2012).

  38. Rahmandoust, M., Ayatollahi, M. R.: Characterization of carbon nanotube based composites under consideration of defects (2015)

  39. Parvaneh, V., Shariati, M., Torabi, H.: Bending buckling behavior of perfect and defective single-walled carbon nanotubes via a structural mechanics model. Acta Mech. 223(11), 2369–2378 (2012)

    Article  MathSciNet  Google Scholar 

  40. Qian, D., Liu, W.K., Ruoff, R.S.: Load transfer mechanism in carbon nanotube ropes. Compos. Sci. Technol. 63(11), 1561–1569 (2003)

    Article  Google Scholar 

  41. Filleter, T., et al.: Experimental-computational study of shear interactions within double-walled carbon nanotube bundles. Nano Lett. 12(2), 732–742 (2012)

    Article  Google Scholar 

  42. Ru, C.Q.: Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys. Rev. B 62(15), 10405–10408 (2000)

    Article  Google Scholar 

  43. Reguero, J. j. V. V., Alemán, B., Más, B.: Controlling carbon nanotube type in macroscopic fibers synthesized by the direct spinning process. Chem. Mater. 26, 3550–3557 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Asadollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadollahi, D., Shariati, M. Investigation of shear forces in twisted carbon nanotube bundles using a structural mechanics approach. Acta Mech 232, 2425–2441 (2021). https://doi.org/10.1007/s00707-021-02949-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02949-y

Navigation