Skip to main content
Log in

Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the modified couple stress theory and Gurtin–Murdoch surface elasticity theory, a size-dependent Timoshenko beam model is developed for investigating the nonlinear vibration response of functionally graded (FG) micro-/nanobeams. The model is capable of capturing the simultaneous effects of microstructure couple stress, surface energy, and von Kármán’s geometric nonlinearity. Sigmoid function and power law homogenization schemes are used to model the material gradation of the beam. Hamilton’s principle is exploited to establish the nonclassical nonlinear governing equations and corresponding higher-order boundary conditions. To account for the nonhomogeneity in boundary conditions, the solution of the problem is split into two parts: the nonlinear static response with the nonhomogeneous boundary conditions and the nonlinear dynamic response. The resulting boundary conditions for the dynamic response are homogeneous, and so Galerkin’s approach is applied to reduce the set of PDEs to a nonlinear system of ODEs. The generalized differential quadrature method in terms of spatial variables is applied to obtain the static response and linear vibration mode. Considering the nonlinear system of ODEs in terms of time-related variables, both pseudo-arclength continuation and Runge–Kutta methods are used to obtain the nonlinear free vibration behavior of FG Timoshenko micro-/nanobeams with simply supported and clamped ends. Verification of the proposed model and solution procedure is performed by comparing the obtained results with those available in the open literature. The effects of the nonhomogeneous boundary conditions, surface elasticity modulus, surface residual stress, material length scale parameter, gradient index, and thickness on the characteristics of linear and nonlinear free vibrations of sigmoid function and power law FG micro-/nanobeams are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Udupa, G., Rao, S.S., Gangadharan, K.: Functionally graded composite materials: an overview. Procedia Mater. Sci. 5, 1291–1299 (2014)

    Google Scholar 

  2. Kanani, A., Niknam, H., Ohadi, A., Aghdam, M.: Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Compos. Struct. 115, 60–68 (2014)

    Google Scholar 

  3. Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., Radmilovic, V., Dahmen, U., Mitlin, D.: Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17(12), 3063 (2006)

    Google Scholar 

  4. Witvrouw A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. In: Materials Science Forum. Trans Tech Publications (2005)

  5. Al-Basyouni, K., Tounsi, A., Mahmoud, S.: Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos. Struct. 125, 621–630 (2015)

    Google Scholar 

  6. Arbind, A., Reddy, J., Srinivasa, A.: Modified couple stress-based third-order theory for nonlinear analysis of functionally graded beams. Latin Am. J. Solids Struct. 11(3), 459–487 (2014)

    Google Scholar 

  7. Khorshidi, M.A., Shariati, M., Emam, S.A.: Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int. J. Mech. Sci. 110, 160–169 (2016)

    Google Scholar 

  8. Shanab, R.A., Attia, M.A., Mohamed, S.A.: Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects. Int. J. Mech. Sci. 131, 908–923 (2017)

    Google Scholar 

  9. Thai, H.-T., Vo, T.P., Nguyen, T.-K., Lee, J.: Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Compos. Struct. 123, 337–349 (2015)

    Google Scholar 

  10. Trinh, L.C., Nguyen, H.X., Vo, T.P., Nguyen, T.-K.: Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory. Compos. Struct. 154, 556–572 (2016)

    Google Scholar 

  11. Attia, M.A., Emam, S.A.: Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory. Acta Mech. 229(8), 3235–3255 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Ghayesh, M.H.: Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int. J. Mech. Sci. 140, 339–350 (2018)

    Google Scholar 

  13. Shafiei, N., Mousavi, A., Ghadiri, M.: Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Compos. Struct. 149, 157–169 (2016)

    Google Scholar 

  14. Şimşek, M., Reddy, J.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    MATH  Google Scholar 

  17. Amirian, B., Hosseini-Ara, R., Moosavi, H.: Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Appl. Math. Mech. 35(7), 875–886 (2014)

    MathSciNet  Google Scholar 

  18. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R., Rouhi, H.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A/Solids 45, 143–152 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R., Sahmani, S.: On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos. B Eng. 60, 158–166 (2014)

    Google Scholar 

  20. Attia, M.A.: On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int. J. Eng. Sci. 115, 73–101 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Dai, H., Zhao, D., Zou, J., Wang, L.: Surface effect on the nonlinear forced vibration of cantilevered nanobeams. Physica E 80, 25–30 (2016)

    Google Scholar 

  22. Gao, X.L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226(2), 457–474 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Gao, X.L., Mahmoud, F.: A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Zeitschrift für angewandte Mathematik und Physik ZAMP 65(2), 393–404 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. B Eng. 42(4), 934–937 (2011)

    Google Scholar 

  25. Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. B Eng. 52, 199–206 (2013)

    Google Scholar 

  26. Hosseini-Hashemi, S., Nazemnezhad, R., Bedroud, M.: Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl. Math. Model. 38(14), 3538–3553 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Hosseini-Hashemi, S., Nazemnezhad, R., Rokni, H.: Nonlocal nonlinear free vibration of nanobeams with surface effects. Eur. J. Mech. A/Solids 52, 44–53 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Kasirajan, P., Amirtham, R., Reddy, J.N.: Surface and non-local effects for non-linear analysis of Timoshenko beams. Int. J. Non-Linear Mech. 76, 100–111 (2015)

    Google Scholar 

  29. Nazemnezhad, R., Hosseini-Hashemi, S.: Nonlinear free vibration analysis of Timoshenko nanobeams with surface energy. Meccanica 50(4), 1027–1044 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Ansari, R., Pourashraf, T., Gholami, R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct. 93, 169–176 (2015)

    Google Scholar 

  31. Hosseini-Hashemi, S., Nahas, I., Fakher, M., Nazemnezhad, R.: Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225(6), 1555–1564 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Wang, G.-F., Feng, X.-Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 42(15), 155411 (2009)

    Google Scholar 

  33. Eltaher, M., Mahmoud, F., Assie, A., Meletis, E.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760–774 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Sahmani, S., Bahrami, M., Ansari, R.: Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos. Struct. 116, 552–561 (2014)

    Google Scholar 

  35. Wang, K., Zeng, S., Wang, B.: Large amplitude free vibration of electrically actuated nanobeams with surface energy and thermal effects. Int. J. Mech. Sci. 131, 227–233 (2017)

    Google Scholar 

  36. Ghadiri, M., Shafiei, N., Akbarshahi, A.: Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Appl. Phys. A 122(7), 673 (2016)

    Google Scholar 

  37. Attia, M.A., Rahman, A.A.A.: On vibrations of functionally graded viscoelastic nanobeams with surface effects. Int. J. Eng. Sci. 127, 1–32 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Oskouie, M.F., Ansari, R.: Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects. Appl. Math. Model. 43, 337–350 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Fang, X.-Q., Zhu, C.-S., Liu, J.-X., Liu, X.-L.: Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Physica B 529, 41–56 (2018)

    Google Scholar 

  40. Zhu, C.-S., Fang, X.-Q., Liu, J.-X., Li, H.-Y.: Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur. J. Mech. A/Solids 66, 423–432 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Rouhi, H., Ansari, R., Darvizeh, M.: Exact solution for the vibrations of cylindrical nanoshells considering surface energy effect. J. Ultrafine Grained Nanostruct. Mater. 48(2), 113–124 (2015)

    Google Scholar 

  42. Gao, X.L., Zhang, G.: A microstructure- and surface energy-dependent third-order shear deformation beam model. Zeitschrift für angewandte Mathematik und Physik ZAMP 66(4), 1871–1894 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, L., Wang, B., Zhou, S., Xue, Y.: Modeling the size-dependent nanostructures: incorporating the bulk and surface effects. J. Nanomech. Micromech. 7(2), 04016012 (2016)

    Google Scholar 

  44. Shaat, M., Mohamed, S.A.: Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. Int. J. Mech. Sci. 84, 208–217 (2014)

    Google Scholar 

  45. Attia, M.A., Mahmoud, F.F.: Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories. Int. J. Mech. Sci. 105, 126–134 (2016)

    Google Scholar 

  46. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Google Scholar 

  47. Wang, K., Kitamura, T., Wang, B.: Nonlinear pull-in instability and free vibration of micro/nanoscale plates with surface energy—a modified couple stress theory model. Int. J. Mech. Sci. 99, 288–296 (2015)

    Google Scholar 

  48. Wang, K., Wang, B., Zhang, C.: Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech. 228(1), 129–140 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, G., Gao, X.-L., Wang, J.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226(12), 4073–4085 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Gao, X.L., Zhang, G.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Continuum Mech. Thermodyn. 28(1–2), 195–213 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Attia, M.A., Mahmoud, F.F.: Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects. Int. J. Mech. Sci. 123, 117–132 (2017)

    Google Scholar 

  52. Nazemnezhad, R., Hosseini-Hashemi, S.: Nonlocal nonlinear free vibration of functionally graded nanobeams. Compos. Struct. 110, 192–199 (2014)

    MATH  Google Scholar 

  53. Tang, Y.-G., Liu, Y., Zhao, D.: Effects of neutral surface deviation on nonlinear resonance of embedded temperature-dependent functionally graded nanobeams. Compos. Struct. 184, 969–979 (2018)

    Google Scholar 

  54. Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Chi, S.-H., Chung, Y.-L.: Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. Int. J. Solids Struct. 43(13), 3657–3674 (2006)

    MATH  Google Scholar 

  56. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2003)

    Google Scholar 

  57. Attia, M.A., Mahmoud, F.F.: Analysis of viscoelastic Bernoulli–Euler nanobeams incorporating nonlocal and microstructure effects. Int. J. Mech. Mater. Des. 13(3), 385–406 (2017)

    Google Scholar 

  58. Attia, M.A.: Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica 52(10), 2391–2420 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Attia, M.A., Mohamed, S.A.: Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory. Appl. Math. Model. 41, 195–222 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Hutchinson, J.: Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68(1), 87–92 (2001)

    MATH  Google Scholar 

  61. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  62. Sahmani, S., Aghdam, M., Bahrami, M.: On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121, 377–385 (2015)

    Google Scholar 

  63. Quan, J., Chang, C.: New insights in solving distributed system equations by the quadrature method—I. Analysis. Comput. Chem. Eng. 13(7), 779–788 (1989)

    Google Scholar 

  64. Ke, L.-L., Yang, J., Kitipornchai, S.: An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45(6), 743–752 (2010)

    MathSciNet  MATH  Google Scholar 

  65. Trefethen, L.N.: Spectral methods in MATLAB, vol. 10. SIAM, New Delhi (2000)

    MATH  Google Scholar 

  66. Mittelmann, H.D.: A pseudo-arclength continuation method for nonlinear eigenvalue problems. SIAM J. Numer. Anal. 23(5), 1007–1016 (1986)

    MathSciNet  MATH  Google Scholar 

  67. Mohamed, S.A., Shanab, R.A., Seddek, L.: Vibration analysis of Euler–Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method. Appl. Math. Model. 40(3), 2396–2406 (2016)

    MathSciNet  MATH  Google Scholar 

  68. Reddy, J.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Ebrahimi, F., Salari, E.: Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Compos. B Eng. 79, 156–169 (2015)

    Google Scholar 

  70. Eltaher, M., Emam, S.A., Mahmoud, F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  71. Hamed, M., Eltaher, M., Sadoun, A., Almitani, K.: Free vibration of symmetric and sigmoid functionally graded nanobeams. Appl. Phys. A 122(9), 829 (2016)

    Google Scholar 

  72. Liu, C., Rajapakse, R.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9(4), 422–431 (2009)

    Google Scholar 

  73. Zhang, G., Gao, X.-L., Bishop, J., Fang, H.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 189, 263–272 (2018)

    Google Scholar 

  74. Ma, H., Gao, X.L., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    MathSciNet  MATH  Google Scholar 

  75. Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94(1), 221–228 (2011)

    Google Scholar 

  76. Aghazadeh, R., Cigeroglu, E., Dag, S.: Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories. Eur. J. Mech. A/Solids 46, 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  77. Chen, X., Zhang, X., Lu, Y., Li, Y.: Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams. Int. J. Mech. Sci. 151, 424–443 (2019)

    Google Scholar 

  78. Chen, X., Lu, Y., Li, Y.: Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium. Appl. Math. Model. 67, 430–448 (2019)

    MathSciNet  Google Scholar 

  79. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    MATH  Google Scholar 

  80. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    MATH  Google Scholar 

  81. Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55(9), 1823–1852 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Attia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coefficients of Eq. (41.1)

The coefficients \(\mathbb {K}_{1}:\mathbb {K}_{5},\mathbb {P}_{1}:\mathbb {P}_{5}\), and \(\mathbb {M}_{1}:\mathbb {M}_{8}\) that appear in Eq. (41.1) are defined as follows:

$$\begin{aligned} \left\{ \begin{array}{c} {{\mathbb {K}}}_{1}\\ {{\mathbb {K}}}_{2}\\ {\begin{array}{l@{\quad }l} {{\mathbb {K}}}_{3}\\ {{\mathbb {K}}}_{4}\\ {{\mathbb {K}}}_{5}\\ \end{array} }\\ \end{array} \right\}= & {} \int _0^1 \left\{ {\begin{array}{c} {\mathbb {k}}_{1}\phi _{u}\\ {\mathbb {k}}_{2}\phi _{u}^{''}\\ {\begin{array}{c} {\mathbb {k}}_{\mathrm {4}}\left( w_{s}^{'}\phi _{w}^{''}+w_{s}^{''}\phi _{w}^{'} \right) +{\mathbb {k}}_{\mathrm {5}}\phi _{w}^{'}+{\mathbb {k}}_{\mathrm {6}}\phi _{w}^{'''}\\ {\mathbb {k}}_{\mathrm {3}}\phi _{\psi }^{''}+{\mathbb {k}}_{\mathrm {7}}\phi _{\psi }\\ {\mathbb {k}}_{\mathrm {4}}\phi _{w}^{'}\phi _{w}^{''}\\ \end{array} }\\ \end{array} } \right\} \phi _{u}\hbox {d}x, \end{aligned}$$
(A.1)
$$\begin{aligned} \left\{ {\begin{array}{c} {\mathbb {P}}_{1}\\ {\mathbb {P}}_{2}\\ {\begin{array}{c} {\mathbb {P}}_{3}\\ {\mathbb {P}}_{4}\\ {\mathbb {P}}_{5}\\ \end{array} }\\ \end{array} } \right\}= & {} \int _0^1 \left\{ {\begin{array}{c} {\mathbb {P}}_{1}\phi _{\psi }\\ {\mathbb {P}}_{2}\phi _{\psi }^{''}+{\mathbb {P}}_{\mathrm {7}}\phi _{\psi }\\ {\begin{array}{c} {\mathbb {P}}_{\mathrm {3}}\phi _{u}^{''}\\ {\mathbb {P}}_{\mathrm {4}}\left( w_{s}^{'}\phi _{w}^{''}+w_{s}^{''}\phi _{w}^{'} \right) +{\mathbb {P}}_{\mathrm {5}}\phi _{w}^{'}+{\mathbb {P}}_{\mathrm {6}}\phi _{w}^{'''}\\ {\mathbb {P}}_{\mathrm {4}}\phi _{w}^{'}\phi _{w}^{''}\\ \end{array} }\\ \end{array} } \right\} \phi _{\psi }\hbox {d}x, \end{aligned}$$
(A.2)
$$\begin{aligned} \left\{ {\begin{array}{c} {\mathbb {M}}_{1}\\ {\mathbb {M}}_{2}\\ {\begin{array}{c} {\mathbb {M}}_{\mathrm {3}}\\ {\mathbb {M}}_{\mathrm {4}}\\ \end{array} }\\ \end{array} } \right\}= & {} \int _0^1 \left\{ {\begin{array}{c} {\mathbb { I}}_{w}\phi _\mathrm{w}\\ \mathbb {c}_{0}\phi _{w}^{''}+\mathbb {c}_{1}\phi _{w}^{'''}+\mathbb {c}_{\mathrm {4}}\left( u_{s}^{''}\phi _{w}^{'}+u_{s}^{'}\phi _{w}^{''} \right) +\mathbb {c}_{\mathrm {5}}\left( \psi _{s}^{''}\phi _{w}^{'}+\psi _{s}^{'}\phi _{w}^{''} \right) +\mathbb {c}_{\mathrm {6}}\left( w_{s}^{\mathrm {'2}}\phi _{w}^{''}+{2w}_{s}^{'}w_{s}^{''}\phi _{w}^{'} \right) \\ {\begin{array}{c} \mathbb {c}_{2}\phi _{\psi }^{'''}+\mathbb {c}_{\mathrm {3}}\phi _{\psi }^{'}+\mathbb {c}_{\mathrm {5}}\left( w_{s}^{''}\phi _{\psi }^{'}+w_{s}^{'}\phi _{\psi }^{''} \right) \\ \mathbb {c}_{\mathrm {4}}\left( w_{s}^{''}\phi _{u}^{'}+w_{s}^{'}\phi _{u}^{''} \right) \\ \end{array} }\\ \end{array} } \right\} \phi _{w}\hbox {d}x, \nonumber \\\end{aligned}$$
(A.3)
$$\begin{aligned} \left\{ {\begin{array}{c} {\mathbb {M}}_{\mathrm {5}}\\ {\mathbb {M}}_{\mathrm {6}}\\ {\begin{array}{c} {\mathbb {M}}_{\mathrm {7}}\\ {\mathbb {M}}_{\mathrm {8}}\\ \end{array} }\\ \end{array} } \right\}= & {} \int _0^1 \left\{ {\begin{array}{c} \mathbb {c}_{\mathrm {4}}\left( \phi _{u}^{''}\phi _{w}^{'}+\phi _{u}^{'}\phi _{w}^{''} \right) \\ \mathbb {c}_{\mathrm {5}}\left( \phi _{\psi }^{''}\phi _{w}^{'}+\phi _{\psi }^{'}\phi _{w}^{''} \right) \\ {\begin{array}{c} \mathbb {c}_{\mathrm {6}}\left( {2w}_{s}^{'}\phi _{w}^{'}\phi _{w}^{''}+w_{s}^{''}\phi _{w}^{{'2}} \right) \\ \mathbb {c}_{\mathrm {6}}\phi _{w}^{\mathrm {'2}}\phi _{w}^{''}\\ \end{array} }\\ \end{array} } \right\} \phi _{w}\hbox {d}x. \end{aligned}$$
(A.4)

Appendix B: Pseudo-arclength continuation

The pseudo-arclength continuation is used to find the steady-state periodic response of a Timoshenko nanobeam, Eq. (41), in a time period \(T={2\pi } /{\varOmega }_{\mathrm {NL}}\). In order to obtain this response, we define \({\bar{\tau }}=t /T\); afterward using a spectral collocation method, the system is discretized over the time domain \({\bar{\tau }}\) into an even number of periodic grid points \((N_{t})\) given by Eq. (B.1),

$$\begin{aligned} {\bar{\tau }}=\frac{i}{N_\mathrm{t}}, 0<i<1, \quad i=1,2,\ldots , N_\mathrm{t}. \end{aligned}$$
(B.1)

Then, the discretized system will be

$$\begin{aligned}&\left( \frac{{\varOmega }_{\mathrm {NL}}}{2\pi } \right) ^{2} {{\mathbb {K}}}_{1}D_\mathrm{t}^{\left( 2 \right) }Q_{u}+{{\mathbb {K}}}_{2}Q_{u}+{{\mathbb {K}}}_{3}Q_{w}+{{\mathbb {K}}}_{4}Q_{\psi }+{{\mathbb {K}}}_{5}\left( Q_{w} \right) ^{\circ 2}=0, \end{aligned}$$
(B.2)
$$\begin{aligned}&\left( \frac{{\varOmega }_{\mathrm {NL}}}{2\pi } \right) ^{2}{\mathbb {M}}_{1}D_\mathrm{t}^{\left( 2 \right) }Q_{w}+{\mathbb {M}}_{2}Q_{w}+{\mathbb {M}}_{3}Q_{\psi }+{\mathbb {M}}_{4}Q_{u}+{\mathbb {M}}_{5}\left( Q_{u}\circ Q_{w} \right) \nonumber \\&\quad +{\mathbb {M}}_{6}\left( Q_{\psi }\circ Q_{w} \right) + {\mathbb {M}}_{7}\left( Q_{w} \right) ^{\circ 2}+ {\mathbb {M}}_{8}\left( Q_{w} \right) ^{\circ 3}=0, \end{aligned}$$
(B.3)
$$\begin{aligned}&\left( \frac{{\varOmega }_{\mathrm {NL}}}{2\pi } \right) ^{2}{\mathbb {P}}_{1}D_\mathrm{t}^{(2)}Q_{\psi }+{\mathbb {P}}_{2}Q_{\psi }+{\mathbb {P}}_{3}Q_{u}+{\mathbb {P}}_{4}Q_{w}+{\mathbb {P}}_{5}\left( Q_{w} \right) ^{\circ 2}=0 \end{aligned}$$
(B.4)

where \(\left( \circ \right) \) is the Hadamard product operator, \({\varOmega }_{\mathrm {NL}}\) is the nonlinear frequency to be calculated, the column vectors \(\left\{ Q_{w},Q_{u},Q_{\psi }\right\} \) are defined as:

$$\begin{aligned} {\begin{array}{lcc} Q_{u}=\left[ q_{u_{1}}, q_{u_{2}}, \ldots q_{u_{N_\mathrm{t}}} \right] ^\mathrm{T}, &{} Q_{w}=\left[ q_{w_{1}}, q_{w_{2}}, \ldots q_{w_{N_\mathrm{t}}} \right] ^\mathrm{T}, &{} Q_{\psi }=\left[ q_{\psi _{1}}, q_{\psi _{2}}, \ldots q_{\psi _{N_\mathrm{t}}} \right] ^\mathrm{T},\\ \end{array} } \end{aligned}$$
(B.5)

and \(D_\mathrm{t}^{(2)}\) is spectral differentiation matrix operator [65].

Equations (B.2B.4) can be rewritten in the form

$$\begin{aligned} {\mathcal {F}}\left( {{\varvec{Q}}},{\varOmega }_{\mathrm {NL}} \right) =0 \end{aligned}$$
(B.6)

where \({\varvec{Q}}={{[}Q_{u}{,}Q_{w}{,}Q_{\psi }{]}}_{3N_\mathrm{t}\times 1}\). In order to employ the pseudo-arclength continuation method, Eq. (B.6) is parameterized by the arclength s, such that

$$\begin{aligned} {\mathcal {F}}\left( {{\varvec{Q}}}(s),{\varOmega }_{\mathrm {NL}}(s) \right) =0. \end{aligned}$$
(B.7)

To obtain a new, fully determined system for the two-vector \(\left( {{\varvec{Q}}},{\varOmega }_{\mathrm {NL}} \right) \), a restriction is added such that

$$\begin{aligned} \left\| {\dot{{{\varvec{Q}}}}} \right\| ^{2}+\left\| {\dot{\varOmega }}_{\mathrm {NL}}^{2} \right\| ^{2}=1 \end{aligned}$$
(B.8)

where \({\dot{{{\varvec{Q}}}}}=\frac{\hbox {d}Q}{\hbox {d}s}\) and \(\dot{\varOmega }_{\mathrm {NL}}=\frac{\hbox {d}\varOmega }{\hbox {d}s}\). With this restriction, we obtain a new, fully determined system for the two-vector \(\left( {{\varvec{Q}}},{\varOmega }_{\mathrm {NL}} \right) \), as a function of s,

$$\begin{aligned} \left\{ {\begin{array}{cc} {\mathcal {F}}_{{{\varvec{Q}}}}{\dot{{{\varvec{Q}}}}}+ {\mathcal {F}}_{{\varOmega }_{\mathrm {NL}}}{\dot{\varOmega }}_{\mathrm {NL}}=0,\\ \left\| {\dot{Q}} \right\| ^{2}+\left\| {\dot{\varOmega }}_{\mathrm {NL}}^{2} \right\| ^{2}=1.\\ \end{array} } \right. \end{aligned}$$
(B.9)

Then, Eq. (B.9) can be solved by a predictor–corrector method, where the Newton-type iterations in the corrector are typically restricted to be perpendicular to the solution curve being continued. Afterward, the frequency response curves, i.e., nonlinear frequency \({\varOmega }_{\mathrm {NL}} \) versus nonlinear amplitude \(Q_{w}\), are obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanab, R.A., Mohamed, S.A., Mohamed, N.A. et al. Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories. Acta Mech 231, 1977–2010 (2020). https://doi.org/10.1007/s00707-020-02623-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02623-9

Navigation