Skip to main content
Log in

Thermoelastic responses of a finite rod due to nonlocal heat conduction

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based upon the Lord and Shulman theory of thermoelasticity, the new governing equations of thermoelasticity with nonlocal heat conduction are formulated. The above model is then employed to study the transient responses of a thermoelastic rod of finite length when subjected to a moving heat source. Both ends of the rod are assumed to be fixed and thermally insulated. The Laplace transform technique is used to obtain the analytical solutions for the field variables such as temperature, displacement, and stress. The inverse Laplace transform based on the Zakian algorithm is numerically implemented to obtain the solutions of the above physical variables in the space–time domain. Specific attention is paid to the study of the effect of the thermal nonlocal parameter on the distributions of the field variables and the speed of the moving heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Majumdar, A., Fushinobu, K., Hijikata, K.: Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. J. Appl. Phys. 77, 6686–6694 (1995)

    Article  Google Scholar 

  2. Tzou, D.Y.: Macro to Micro-scale Heat Transfer: The Lagging Behaviour. Taylor and Francis, Abingdon, UK (1997)

    Google Scholar 

  3. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  Google Scholar 

  4. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)

    Book  Google Scholar 

  5. Koechlin, F., Bonin, B.: Parametrisation of the Niobium thermal conductivity in the superconducting state. In: Bonin, B. (ed.) Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France, New York, Gordon and Breach, pp. 665–669 (1996)

  6. Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann–Franz law. Phys. Rev. B 82, 075418 (2010)

    Article  Google Scholar 

  7. Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98, 074306 (2005)

    Article  Google Scholar 

  8. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  9. Yu, Y.J., Tian, X.G., Liu, R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech. A Solids 51, 96–106 (2015)

    Article  MathSciNet  Google Scholar 

  10. Yu, Y.J., Tian, X.G., Lu, T.J.: Fractional order generalized electro–magneto-thermo-elasticity. Eur. J. Mech. A Solids 42, 188–202 (2013)

    Article  MathSciNet  Google Scholar 

  11. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)

    Article  MathSciNet  Google Scholar 

  12. Sobolev, S.: Equations of transfer in non-local media. Int. J. Heat Mass Transf. 37, 2175–2182 (1994)

    Article  Google Scholar 

  13. Chan, W.L., Averback, R.S., Cahill, D.G.: Dynamics of femtosecond laser-induced melting of silver. Phys. Rev. B 78, 214107 (2008)

    Article  Google Scholar 

  14. Yu, Y.J., Li, G.L., Xue, Z.N.: The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale. Phys. Lett. A 380, 255–261 (2016)

    Article  Google Scholar 

  15. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  Google Scholar 

  16. Ma, Y.: Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer. Appl. Phys. Lett. 101, 211905 (2012)

    Article  Google Scholar 

  17. Dong, Y., Cao, B.Y., Guo, Z.Y.: Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Physica E 56, 256–262 (2014)

    Article  Google Scholar 

  18. Yu, Y.J., Tian, X.G., Liu, X.R.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A Solids 60, 238–253 (2016)

    Article  MathSciNet  Google Scholar 

  19. Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R. Mec. 344, 388–401 (2016)

    Article  Google Scholar 

  20. Goshima, T., Miyao, K.: Transient thermal stresses in an infinite plate with a hole due to rotating heat source. J. Therm. Stress. 13, 43–56 (1990)

    Article  Google Scholar 

  21. Sherief, H.H., Anwar, M.N.: Generalized thermoelasticity problem for a plate subjected to moving heat sources on both sides. J. Therm. Stress. 15, 489–505 (1992)

    Article  Google Scholar 

  22. Ootao, Y., Akai, T., Tanigawa, Y.: Three-dimensional transient thermal stress analysis of a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction. J. Therm. Stress. 18, 497–512 (1995)

    Article  Google Scholar 

  23. Postacioğlu, N., Tarhan, D., Kapadia, P.: Wave pattern produced by a heat source moving with constant velocity on the top of an infinite plate. J. Therm. Stress. 26, 767–777 (2003)

    Article  Google Scholar 

  24. Yapici, H., Genç, M.S., Özişik, G.: Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source. J. Therm. Stress. 31, 476–493 (2008)

    Article  Google Scholar 

  25. Bachher, M., Sarkar, N., Lahiri, A.: Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer. Int. J. Mech. Sci. 89, 84–91 (2014)

    Article  Google Scholar 

  26. Bachher, M., Sarkar, N., Lahiri, A.: Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. Meccanica 50, 2167–217 (2015)

    Article  MathSciNet  Google Scholar 

  27. Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Wave Random Complex 29, 595–613 (2019)

    Article  MathSciNet  Google Scholar 

  28. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  29. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  Google Scholar 

  30. Lebon, G., Grmela, M.: Weakly nonlocal heat equation in rigid solids. Phys. Lett. A 214, 184–188 (1996)

    Article  Google Scholar 

  31. Sellitto, A., Jou, D., Bafaluy, J.: Non-local effects in radial heat transport in silicon thin layers and grapheme sheets. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 1217–1229 (2011)

    Article  Google Scholar 

  32. Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)

    Article  MathSciNet  Google Scholar 

  33. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int. J. Heat Mass Transf. 55, 2338–2344 (2012)

    Article  Google Scholar 

  34. Burnett, D.: The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40, 382–435 (1936)

    Article  MathSciNet  Google Scholar 

  35. He, T., Cao, L.: A problem of generalized magneto-thermoelastic thin slim strip subjected to a moving heat source. Math. Comput. Model. 49, 1710–1720 (2009)

    Article  MathSciNet  Google Scholar 

  36. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, New York (1976)

    MATH  Google Scholar 

  37. Povstenko, Y.: Fractional Thermoelasticity. Springer, New York (2015)

    Book  Google Scholar 

  38. Zakian, V.: Numerical inversions of Laplace transforms. Electron. Lett. 5, 120–121 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantu Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, N. Thermoelastic responses of a finite rod due to nonlocal heat conduction. Acta Mech 231, 947–955 (2020). https://doi.org/10.1007/s00707-019-02583-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02583-9

Navigation