Skip to main content
Log in

Magnetothermoelastic Interaction in a Rod of Finite Length Subjected to Moving Heat Sources Via Eringen’s Nonlocal Model

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The generalized nonlocal thermoelastic model in the context of Eringen’s nonlocal elasticity is applied to investigate the magnetothermoelastic interactions in a rod of finite length placed in a magnetic field with a moving source. With the use of the Laplace transform and numerical Laplace inversion techniques, the governing equations are solved, and the solutions in the time domain are obtained numerically. The distributions of the nonlocal thermal stress, temperature, and the displacement in the rod are obtained and presented graphically. The effects of the rotational speed and the speed of the moving heat source, nonlocal parameter, and the applied magnetic field intensity on the considered variables are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1–16 (1972).

    Article  MathSciNet  Google Scholar 

  2. A. C. Eringen and D. G. B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., 10, 233–248 (1972).

    Article  MathSciNet  Google Scholar 

  3. A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703–4710 (1983).

    Article  Google Scholar 

  4. E. Inan and A. C. Eringen, Nonlocal theory of wave propagation in thermoelastic plates, Int. J. Eng. Sci., 29, 831–843 (1991).

    Article  Google Scholar 

  5. J. Wang and R. S. Dhaliwal, Uniqueness in generalized nonlocal thermoelasticity, J. Therm. Stresses, 16, 71–77, (1993).

    Article  MathSciNet  Google Scholar 

  6. C. Koutsoumaris, K. G. Eptaimeros, and G. J. Tsamasphyros, A different approach to Eringen’s nonlocal integral stress model with applications for beams, Int. J. Solid Struct., 112, 222–238 (2017).

    Article  Google Scholar 

  7. K. Rajneesh, M. Aseem, and Rekha Rani, Transient analysis of nonolocal microstretch thermoelastic thick circular plate with phase lags, Med. J. Model. Simul., 9, 25–42 (2018).

    Google Scholar 

  8. A. E. Abouelregal and B. O. Mohamed, Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating, J. Comput. Theor. Nanosc., 15, 1233–1242 (2018).

    Article  Google Scholar 

  9. A. E. Abouelregal and A. M. Zenkour, Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads, Microsys. Technolog., 24, No. 2, 1189–1199 (2018).

    Article  Google Scholar 

  10. A. E. Abouelregal and A. M. Zenkour, Nonlocal thermoelastic semi-infinite medium with variable thermal conductivity due to a laser short-pulse, J. Comput. Appl. Mech. 50, No. 1, 90–98 (2019).

    Google Scholar 

  11. A. E. Abouelregal, Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen’s nonlocal model, J. Comput. Appl. Mech., 50, No. 1, 118–126 (2019).

    Google Scholar 

  12. C. W. Lim, C. Li, and J. L. Yu, Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach, Acta Mech. Sin., 26, 755–765 (2010).

    Article  MathSciNet  Google Scholar 

  13. M. F. Oskouie, R. Ansari, and H. Rouhi, Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: A numerical approach, Acta Mech. Sin., 34, No. 5, 871–882 (2018).

    Article  MathSciNet  Google Scholar 

  14. M. F. Oskouie, R. Ansari, and F. Sadeghi, Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory, Acta Mech. Sin., 30, No. 4, 416–424 (2017).

    Article  Google Scholar 

  15. K. F. Wang, B. L. Wang, and T. Kitamura, A review on the application of modified continuum models in modeling and simulation of nanostructures, Acta Mech. Sin., 32, No. 1, 83–100 (2016).

    Article  MathSciNet  Google Scholar 

  16. M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240–253 (1956).

    Article  MathSciNet  Google Scholar 

  17. H. W. Lord and Y. A. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  Google Scholar 

  18. D. Y. Tzou, A unified approach for heat conduction from macro- to micro-scales, J. Heat Transfer, 117, 8–16 (1995).

    Article  Google Scholar 

  19. D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Washington, DC, Taylor & Francis (1996).

  20. D. Y. Tzou, Experimental support for the lagging behavior in heat propagation, J. Thermophys. Heat Transfer, 9, 686–693 (1995).

    Article  Google Scholar 

  21. A. M. Zenkour, Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis, Acta Mech., 229, No. 9, 3671–3692 (2018).

    Article  MathSciNet  Google Scholar 

  22. A. M. Zenkour, Refined multi-phase-lags theory for photothermal waves of a gravitated semiconducting half-space, Compos. Struct., 212, 346–364 (2019).

    Article  Google Scholar 

  23. A. M. Zenkour, Effect of thermal activation and diffusion on a photothermal semiconducting half-space, J. Phys. Chem. Solids, 132, 56–67 (2019).

    Article  Google Scholar 

  24. D. S. Mashat and A. M. Zenkour, Modified DPL Green–Naghdi theory for thermoelastic vibration of temperature-dependent nanobeams, Res. Phys., 16, Article ID 102845 (2020).

  25. A. M. Zenkour, Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag Green-Naghdi model, J. Ocean Eng. Sci., 5, 214–222 (2020).

    Article  Google Scholar 

  26. A. M. Zenkour, Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory, J. Therm. Stresses, 43, No. 6, 687–706 (2020).

    Article  Google Scholar 

  27. A. M. Zenkour, Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dualphase-lag model, J. Phys. Chemist. Solids, 137, Article ID 109213 (2020).

  28. L. Knopoff, The interaction between elastic wave motion and a magnetic field in electrical conductors, J. Geophys. Res., 60, 441–456 (1955).

    Article  Google Scholar 

  29. S. Kaliski and J. Petykiewicz, Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for anisotropic bodies, Proceed. Vib. Problems, 4, 1–12 (1959).

    MATH  Google Scholar 

  30. A. M. Zenkour and A. E. Abouelregal, Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat, Earthquakes Struct., 10, No. 3, 681–697 (2016).

    Article  Google Scholar 

  31. H. Wang, K. Dong, F. Men, Y. J. Yan, and X. Wang, Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix, Appl. Math. Model., 34, 878–889 (2010).

    Article  MathSciNet  Google Scholar 

  32. S. K. Roychoudhuri and S. Mukhopadhyay, Effect of rotation and relaxation times on plane waves in generalized thermo-viscoelasticity, Int. J. Math. Math. Sci., 23, 497–505 (2000).

    Article  MathSciNet  Google Scholar 

  33. T. He and L. Cao, A problem of generalized magnetothermoelastic thin slim strip subjected to a moving heat source, Math. Computer Model., 49, Nos. 7–8, 1710–1720 (2009).

    Article  Google Scholar 

  34. G. Honig and U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math., 10, No. 1, 113–132 (1984).

    Article  MathSciNet  Google Scholar 

  35. C.B. Xiong and Y. Guo, Electromagneto-thermoelastic diffusive plane waves in a half-space with variable material properties under fractional order thermoelastic diffusion, Int. J. Appl. Electrom., 53, 251–269 (2017).

    Google Scholar 

  36. M. I. A. Othman and R. S. Tantawi, The effect of magnetic field on an infinite conducting thermoelastic rotating medium under G-N theory, Int. J. Innovative Res. Sci. Tech., 4, 2301–2309 (2015).

    Google Scholar 

  37. F. S. Bayones and A. M. Abd-Alla, Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium, Res. Phys., 8, 7–15 (2018).

    Google Scholar 

  38. A. E. Abouelregal, Fibre-reinforced generalized anisotropic thick plate with initial stress under the influence of fractional thermoelasticity theory, Advanc. Appl. Math. Mech., 9, No. 3, 722–741 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 3, pp. 665–675, May–June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., Abouelregal, A.E. Magnetothermoelastic Interaction in a Rod of Finite Length Subjected to Moving Heat Sources Via Eringen’s Nonlocal Model. J Eng Phys Thermophy 95, 651–661 (2022). https://doi.org/10.1007/s10891-022-02521-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02521-y

Keywords

Navigation