Skip to main content
Log in

Complete general solution for Lord–Shulman generalized thermoelastodynamics by using potential functions for transversely isotropic solids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Classical theories of thermoelasticity predict an infinite speed for thermal signals which contradicts the physical phenomena. Non-classical thermoelasticity theories have been proposed to remove this paradox. One of the non-classical theories of thermoelasticity is the Lord–Shulman theory. The main purpose of this study is to present a complete general solution for the Lord–Shulman non-classical equations of thermoelasticity for three-dimensional transversely isotropic solids. In the Lord–Shulman theory, three equations of motion accompanied with the energy equation make a set of four coupled partial differential equations. In this study, four new scalar potential functions are introduced for uncoupling the coupled displacement–temperature equations. The solution is given in terms of four scalar potential functions satisfying uncoupled partial differential equations which are of lesser complexity than the coupled displacement–temperature equations. The potential functions are governed by a wave or a repeated wave–heat equation. Completeness of the solution is proved based on retarded logarithmic and retarded Newtonian potential functions, solutions for repeated wave and heat equations, the extended Boggio’s theorem for transversely isotropic media, and the perturbation theory. It is shown that the solution presented in this paper degenerates to six special problems previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eskandari-Ghadi, M., Sture, S., Rahimian, M., Forati, M.: Thermoelastodynamics with scalar potential functions. J. Eng. Mech. 140(1), 74–81 (2013)

    Article  Google Scholar 

  2. Eskandari-Ghadi, M., Rahimian, M., Sture, S., Forati, M.: Thermoelastodynamics in transversely isotropic media with scalar potential functions. J. Appl. Mech. 81(2), 021013 (2014)

    Article  Google Scholar 

  3. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekharaiah, D.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355–376 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. C. R. Acad. Sci. 247, 431–433 (1958)

    MATH  Google Scholar 

  7. Vernotte, P.: Some possible complications in the phenomena of thermal conduction. C. R. Acad. Sci. 252, 2190–2191 (1961)

    Google Scholar 

  8. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  9. Chandrasekharaiah, D.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  10. Fox, N.: Generalised thermoelasticity. Int. J. Eng. Sci. 7(4), 437–445 (1969)

    Article  MATH  Google Scholar 

  11. Kaliski, S.: Wave equations of thermoelasticity (Wave equations of thermoelasticity derived, based on wave equation of heat conduction). Academie Polonaise Des Sciences, Bulletin, Series Des Sciences Techniques 13(5), 253–260 (1965)

    Google Scholar 

  12. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 38(1), 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41(5), 319–332 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  15. Green, A., Laws, N.: On the entropy production inequality. Arch. Ration. Mech. Anal. 45(1), 47–53 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, S.: The comparisons of thermo-elastic waves for Lord–Shulman mode and Green-Lindsay mode based on Guo’s eigen theory. Acta Mech. 222(3–4), 199–208 (2011)

    Article  MATH  Google Scholar 

  17. Kumar, R., Kothari, S., Mukhopadhyay, S.: Some theorems on generalized thermoelastic diffusion. Acta Mech. 217(3–4), 287–296 (2011)

    Article  MATH  Google Scholar 

  18. Tripathi, J., Kedar, G., Deshmukh, K.: Two-dimensional generalized thermoelastic diffusion in a half-space under axisymmetric distributions. Acta Mech. 226(10), 3263–3274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Green, A.E., Naghdi, P.: On thermodynamics and the nature of the second law. Proc. R. Soc. Lond. A 357(1690), 253–270 (1977)

    Article  MathSciNet  Google Scholar 

  21. Green, A., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Green, A., Naghdi, P.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  23. Ignaczak, J.: Generalized thermoelasticity and its applications. Therm. Stress. 3, 279–354 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stress. 22(4–5), 451–476 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Hetnarski, R., Ignaczak, J.: Nonclassical dynamical thermoelasticity. Int. J. Solids Struct. 37(1–2), 215–224 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ieşan, D.: Thermoelastic Models of Continua, Solid Mechanics and Its Applications, vol. 118. Kluwer Academic Publishers, Boston (2004)

    Book  MATH  Google Scholar 

  27. Bala, K.: A review on two-temperature thermoelasticity. Int. J. Mod. Eng. Res. 2, 4–12 (2012)

    Google Scholar 

  28. Hetnarski, R.B., Eslami, M.R., Gladwell, G.: Thermal Stresses: Advanced Theory and Applications, vol. 41. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Truesdell, C.A.: Invariant and complete stress functions for general continua. Arch. Ration. Mech. Anal. 4(1), 1–29 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sternberg, E., Eubanks, R.: On stress functions for elastokinetics and the integration of the repeated wave equation. Q. Appl. Math. 15(2), 149–153 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sternberg, E.: On the integration of the equations of motion in the classical theory of elasticity. Arch. Ration. Mech. Anal. 6(1), 34–50 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sternberg, E., Gurtin, M.E.: On the completeness of certain stress functions in the linear theory of elasticity. In: Proceedings of the Fourth U.S. National Congress on Applied Mechanics,, Berkeley, CA, USA, 18–21 June 1962, pp. 793–797

  33. Gurtin, M.E.: On Helmholtz’s theorem and the completeness of the Papkovich-Neuber stress functions for infinite domains. Arch. Ration. Mech. Anal. 9(1), 225–233 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Verruijt, A.: The completeness of Biot’s solution of the coupled thermoelastic problem. Q. Appl. Math. 26(4), 485–490 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, M., Wang, W.: Completeness and nonuniqueness of general solutions of transversely isotropic elasticity. Int. J. Solids Struct. 32(3–4), 501–513 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tran-Cong, T.: On the completeness and uniqueness of the Papkovich-Neuber and the non-axisymmetric Boussinesq, Love, and Burgatti solutions in general cylindrical coordinates. J. Elast. 36(3), 227–255 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Eskandari-Ghadi, M.: A complete solution of the wave equations for transversely isotropic media. J. Elast. 81(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Eskandari-Ghadi, M., Pak, R.Y.: Elastodynamics and elastostatics by a unified method of potentials for x 3-convex domains. J. Elast. 92(2), 187–194 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hayati, Y., Eskandari-Ghadi, M., Raoofian, M., Rahimian, M., Ardalan, A.A.: Dynamic Green’s functions of an axisymmetric thermoelastic half-space by a method of potentials. J. Eng. Mech. 139(9), 1166–1177 (2012)

    Article  Google Scholar 

  40. Hayati, Y., Eskandari-Ghadi, M., Raoofian, M., Rahimian, M., Ardalan, A.A.: Frequency domain analysis of an axisymmetric thermoelastic transversely isotropic half-space. J. Eng. Mech. 139(10), 1407–1418 (2012)

    Article  Google Scholar 

  41. Hayati, Y., Eskandari-Ghadi, M.: Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions. Zeitschrift für angewandte Mathematik und Physik 69(1), 18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gurtin, M.E.: The linear theory of elasticity, mechanics of solids II. In: Truesdell, C.A. (ed.) Linear Theories of Elasticity and Thermoelasticity, pp. 1–295. Springer, Berlin (1972)

    Google Scholar 

  43. Carlson, D.E.: Linear Thermoelasticity, Mechanics of Solids, vol. II. Springer, Berlin (1972)

    Google Scholar 

  44. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow (1981)

    MATH  Google Scholar 

  45. Phillips, H.B.: Vector Analysis. Wiley, New York (1933)

    MATH  Google Scholar 

  46. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. Book Company Inc., New York, McGraw-Hill (1953)

    MATH  Google Scholar 

  47. Galerkin, B.G.: Contribution à la solution générale du problème de la théorie de l’élasticité dans le cas de trois dimensions. CR Acad. Sci. Paris 190, 1047 (1930)

    MATH  Google Scholar 

  48. Golecki, J.: Mean-stress approach to integration of differential equations in elastostatics, and the Neuber-Papkovich and Galerkin representations. Ing. Arch. 44(3), 153–160 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The partial support from the Amirkabir University of Technology (Tehran Polytechnic) during this work is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazdan Hayati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayati, Y., Havaei, G. & Eslami, A. Complete general solution for Lord–Shulman generalized thermoelastodynamics by using potential functions for transversely isotropic solids. Acta Mech 230, 2751–2769 (2019). https://doi.org/10.1007/s00707-019-02423-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02423-w

Navigation