Skip to main content
Log in

Algebraic structure and Poisson brackets of single degree of freedom non-material volumes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates an algebraic structure and Poisson theory of single degree of freedom non-material volumes. The equations of motion are proposed in a contravariant algebraic form, and an algebraic product is determined. A consistent algebraic structure and a Lie algebra structure are proposed, and a proposition is obtained. The Poisson theory of the non-material volume is established, and five theorems are derived. Three examples are given to illustrate the application of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irschik, H., Holl, H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153, 231–248 (2002)

    Article  MATH  Google Scholar 

  2. Cveticanin, L.: Dynamics of Bodies with Time-Variable Mass. Springer, Seelisberg (2016)

    Book  MATH  Google Scholar 

  3. Irschik, H., Holl, H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57, 145–160 (2004)

    Article  Google Scholar 

  4. Casetta, L.: The inverse problem of Lagrangian mechanics for a non-material volume. Acta Mech. 226, 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casetta, L., Pesce, C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224, 919–924 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casetta, L., Pesce, C.P.: The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech. 225, 1607–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Irschik, H., Holl, H.J.: Lagrange’s equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mech. 226, 63–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casetta, L., Irschik, H., Pesce, C.P.: A generalization of Noether’s theorem for a non-material volume. Z. Angew. Math. Mech. 96, 696–706 (2016)

    Article  MathSciNet  Google Scholar 

  9. Casetta, L.: Poisson brackets formulation for the dynamics of a position-dependent mass particle. Acta Mech. 228, 4491–4496 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mei, F.X.: Poisson’s theory of Birkhoffian system. Chin. Sci. Bull. 41, 641–645 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Mei, F.X.: The algebraic structure and Poisson’s theory for the equations of motion of non-holonomic systems. J. Appl. Math. Mech. 62, 155–158 (1998)

    Article  MathSciNet  Google Scholar 

  12. Fu, J.L., Chen, X.W., Luo, S.K.: Algebraic structures and Poisson integrals of relativistic dynamical equations for rotational systems. Appl. Math. Mech. 20, 1266–1275 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, S.K., Chen, X.W., Guo, Y.X.: Algebraic structure and Poisson integrals of rotational relativistic Birkhoff system. Chin. Phys. 51, 523–528 (2002)

    Google Scholar 

  14. Liu, H.J., Tang, Y.F., Fu, J.L.: Algebraic structure and Poisson’s theory of mechanico-electrical systems. Chin. Phys. 15, 1653–1662 (2006)

    Article  Google Scholar 

  15. Xia, L.L.: Poisson theory and inverse problem in a controllable mechanical system. Chin. Phys. Lett. 28, 120202 (2011)

    Article  Google Scholar 

  16. Zhang, Y.: Poisson theory and integration method of Birkhoffian systems in the event space. Chin. Phys. B 19, 080301 (2010)

    Article  Google Scholar 

  17. Zhang, Y., Shang, M.: Poisson theory and integration method for a dynamical system of relative motion. Chin. Phys. B 20, 024501 (2011)

    Article  Google Scholar 

  18. Fu, J.L., Xie, F.P., Guo, Y.X.: Algebraic structure and Poissons integral theory of \(f (R)\) cosmology. Int. J. Theor. Phys. 51, 35–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Colarusso, M., Lau, M.: Lie–Poisson theory for direct limit Lie algebras. J. Pure Appl. Algebra 220, 1489–1516 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Benini, M., Schenkel, A.: Poisson algebras for non-linear field theories in the cahiers topos. Ann. Henri Poincaré 18, 1435–1464 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ershkov, S.V.: A Riccati-type solution of Euler–Poisson equations of rigid body rotation over the fixed point. Acta Mech. 228, 2719–2723 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11702119, 51609110, 11502071), the Natural Science Foundation of Jiangsu Province (No. BK20170565) and the Innovation Foundation of Jiangsu University of Science and Technology (1012931609, 1014801501-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-An Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, WA., Liu, K., Xia, ZW. et al. Algebraic structure and Poisson brackets of single degree of freedom non-material volumes. Acta Mech 229, 2299–2306 (2018). https://doi.org/10.1007/s00707-018-2119-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2119-1

Navigation