Skip to main content
Log in

Simulation of mechanical parameters of graphene using the DREIDING force field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Molecular mechanics/molecular dynamics (MM/MD) methods are widely used in computer simulations of deformation (including buckling, vibration, and fracture) of low-dimensional carbon nanostructures (single-layer graphene sheets (SLGSs), single-walled nanotubes, fullerenes, etc). In MM/MD simulations, the interactions between carbon atoms in these nanostructures are modeled using force fields (e.g., AIREBO, DREIDING, MM3/MM4). The objective of the present study is to fit the DREIDING force field parameters (see Mayo et al. J Phys Chem 94:8897–8909, 1990) to most closely reproduce the mechanical parameters of graphene (Young’s modulus, Poisson’s ratio, bending rigidity modulus, and intrinsic strength) known from experimental studies and quantum mechanics simulations since the standard set of the DREIDING force field parameters (see Mayo et al. 1990) leads to unsatisfactory values of the mechanical parameters of graphene. The values of these parameters are fitted using primitive unit cells of graphene acted upon by forces that reproduce the homogeneous deformation of this material in tension/compression, bending, and fracture. (Different sets of primitive unit cells are used for different types of deformation, taking into account the anisotropic properties of graphene in states close to failure.) The MM method is used to determine the dependence of the mechanical moduli of graphene (Young’s modulus, Poisson’s ratio, and bending rigidity modulus) on the scale factor. Computer simulation has shown that for large linear dimensions of SLGSs, the mechanical parameters of these sheets are close to those of graphene. In addition, computer simulation has shown that accounting for in-layer van der Waals forces has a small effect on the value of the mechanical moduli of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MM:

Molecular mechanics

MD:

Molecular dynamics

SLGS:

Single-layer graphene sheet

MLGS:

Multilayer graphene sheet

GNR:

Graphene nanoribbon

SWCNT:

Single-walled carbon nanotube

QM:

Quantum mechanics (first principles, ab initio)

CM:

Continuum mechanics

DFT:

Density functional theory

GGA:

Generalized gradient approximation (approximation of DFT)

LDA:

Local density approximation (approximation of DFT)

TB:

Tight-binding

DFTB:

Density functional tight-binding

vdW:

van der Waals

REV:

Representative elementary volume

ac-direction:

Armchair direction

zz-direction:

Zigzag direction

References

  1. Allinger, N.L., Yuh, Y.H., Lii, J.-H.: Molecular mechanics: the MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989)

    Article  Google Scholar 

  2. Alyokhin, V.V., Annin, B.D., Babichev, A.V., Korobeynikov, S.N.: Free vibrations and buckling of graphene sheets. Dokl. Phys. 58(11), 487–490 (2013)

    Article  MATH  Google Scholar 

  3. Alzebdeh, K.I.: An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet. Solid State Commun. 177, 25–28 (2014)

    Article  Google Scholar 

  4. Andrew, R.C., Mapasha, R.E., Ukpong, A.M., Chetty, N.: Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012)

    Article  Google Scholar 

  5. Androulidakis, Ch., Tsoukleri, G., Koutroumanis, N., Gkikas, G., Pappas, P., Parthenios, J., Papagelis, K., Galiotis, C.: Experimentally derived axial stress-strain relations for two-dimensional materials such as monolayer graphene. Carbon 81, 322–328 (2015)

    Article  Google Scholar 

  6. Annin, B.D., Korobeynikov, S.N., Babichev, A.V.: Computer simulation of a twisted nanotube buckling. J. Appl. Ind. Math. 3(3), 318–333 (2009)

    Article  MathSciNet  Google Scholar 

  7. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N.: Computer simulation of nanotube contact. Mech. Solids 45(3), 352–369 (2010)

    Article  Google Scholar 

  8. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N.: Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mech. Solids 47(5), 544–559 (2012)

    Article  Google Scholar 

  9. Ansari, R., Mirnezhad, M., Sahmani, S.: An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48, 1355–1367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ansari, R., Rouhi, H., Mirnezhad, M.: A hybrid continuum and molecular mechanics model for the axial buckling of chiral single-walled carbon nanotubes. Curr. Appl. Phys. 14, 1360–1368 (2014)

    Article  Google Scholar 

  11. Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys. Rev. B 69, 115415 (2004)

    Article  Google Scholar 

  12. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  13. Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  14. Berinskii, I., Altenbach, H.: In-plane and out-of-plane elastic properties of two-dimensional single crystal. Acta Mech. 228, 683–691 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)

    Article  Google Scholar 

  16. Berinskii, I.E., Borodich, F.M.: On the isotropic elastic properties of graphene crystal lattice. In: Altenbach, H., Morozov, N.F. (eds.) Advanced Structured Materials, vol. 30: Surface Effects in Solid Mechanics, pp. 33–42. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Berinskii, I., Krivtsov, A.: Linear oscillations of suspended graphene. In: Altenbach, H., Mikhasev, G.I. (eds.) Advanced Structured Materials, vol. 45: Shell and Membrane Theories in Mechanics and Biology, pp. 99–107. Springer International Publishing, Cham (2015)

    Google Scholar 

  18. Berinskii, I.E., Krivtsov, A.M., Kudarova, A.M.: Bending stiffness of a graphene sheet. Phys. Mesomech. 17(4), 356–364 (2014)

    Article  Google Scholar 

  19. Blakslee, O.L., Proctor, D.G., Seldin, E.J., Spence, G.B., Weng, T.: Elastic constants of compression annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)

    Article  Google Scholar 

  20. Bogár, F., Mintmire, J.W., Bartha, F., Mező, T., van Alsenoy, C.: Density-functional study of the mechanical and electronic properties of narrow carbon nanotubes under axial stress. Phys. Rev. B 72, 085452 (2005)

    Article  Google Scholar 

  21. Bosak, A., Krisch, M.: Elasticity of single-crystalline graphite: inelastic x-ray scattering study. Phys. Rev. B 75, 153408 (2007)

    Article  Google Scholar 

  22. Bowman, J.C., Krumhansl, J.A.: The low-temperature specific heat of graphite. J. Phys. Chem. Solids 6, 367–379 (1958)

    Article  Google Scholar 

  23. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of dimond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  24. Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)

    Article  Google Scholar 

  25. Burkert, U., Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington (1982)

    Google Scholar 

  26. Cadelano, E., Palla, P.L., Giordano, S., Colombo, L.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009)

    Article  Google Scholar 

  27. Caillerie, D., Mourad, A., Raoult, A.: Discrete homogenization in graphene sheet modeling. J. Elast. 84, 33–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cao, G.: Atomistic studies of mechanical properties of graphene. Polymers 6, 2404–2432 (2014)

    Article  Google Scholar 

  29. Chandraseker, K., Mukherjee, S.: Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes. Comput. Mater. Sci. 40, 147–158 (2007)

    Article  Google Scholar 

  30. Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  31. Chen, T., Cheung, R.: Mechanical properties of graphene. In: Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L. (eds.) Graphene Science Handbook: Mechanical and Chemical Properties, pp. 3–15. CRC Press, Taylor and Francis Group, London (2016)

    Chapter  Google Scholar 

  32. Cheng, H.C., Liu, Y.L., Hsu, Y.C., Chen, W.H.: Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46, 1695–1704 (2009)

    Article  MATH  Google Scholar 

  33. Cho, J., Luo, J.J., Daniel, I.M.: Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Compos. Sci. Technol. 67, 2399–2407 (2007)

    Article  Google Scholar 

  34. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  35. Davini, C.: Homogenization of a graphene sheet. Contin. Mech. Thermodyn. 26, 95–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dominguez-Rodriguez, G., Tapia, A., Aviles, F.: An assessment of finite element analysis to predict the elastic modulus and Poisson’s ratio of single-wall carbon nanotubes. Comput. Mater. Sci. 82, 257–263 (2014)

    Article  Google Scholar 

  37. Ducéré, J.-M., Lepetit, C., Chauvin, R.: Carbo-graphite: structural, mechanical and electronic properties. J. Phys. Chem. C 117(42), 21671–21681 (2013)

    Article  Google Scholar 

  38. Faccio, R., Denis, P.A., Pardo, H., Goyenola, C., Mombru, A.W.: Mechanical properties of graphene nanoribbons. J. Phys. Condens. Matter 21, 285304 (2009)

    Article  Google Scholar 

  39. Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)

    Article  Google Scholar 

  40. Favata, A., Micheletti, A., Podio-Guidugli, P., Pugno, N.M.: Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J. Elast. 125, 1–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Frank, O., Mohr, M., Maultzsch, J., Thomsen, C., Riaz, I., Jalil, R., Novoselov, K.S., Tsoukleri, G., Parthenios, J., Papagelis, K., Kavan, L., Galiotis, C.: Raman 2D-band splitting in graphene: theory and experiment. ACS Nano 5(3), 2231–2239 (2011)

    Article  Google Scholar 

  42. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  43. Genoese, Al, Genoese, An, Rizzi, N.L., Salerno, G.: On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos. Part B Eng. 115, 316–329 (2017)

    Article  Google Scholar 

  44. Georgantzinos, S.K., Giannopoulos, G.I.: Thermomechanical buckling of single walled carbon nanotubes by a structural mechanics method. Diam. Relat. Mater. 80, 27–37 (2017)

    Article  Google Scholar 

  45. Georgantzinos, S.K., Giannopoulos, G.I., Anifantis, N.K.: Coupled thermomechanical behavior of graphene using the spring-based finite element approach. J. Appl. Phys. 120, 014305 (2016)

    Article  Google Scholar 

  46. Georgantzinos, S.K., Markolefas, S., Giannopoulos, G.I., Katsareas, D.E., Anifantis, N.K.: Designing pinhole vacancies in graphene towards functionalization: effects on critical buckling load. Superlattices Microstruct. 103, 343–357 (2017)

    Article  Google Scholar 

  47. Ghaderi, S.H., Hajiesmaili, E.: Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method. Mater. Sci. Eng. A 582, 225–234 (2013)

    Article  Google Scholar 

  48. Giannopoulos, G.I.: Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput. Mater. Sci. 53, 388–395 (2012)

    Article  Google Scholar 

  49. Giannopoulos, G.I.: Crack identification in graphene using eigenfrequencies. Int. J. Appl. Mech. 9(1), 1750009 (2017)

    Article  Google Scholar 

  50. Giannopoulos, G.I., Georgantzinos, S.K.: Establishing detection maps for carbon nanotube mass sensors: molecular versus continuum mechanics. Acta Mech. 228, 2377–2390 (2017)

    Article  Google Scholar 

  51. Giannopoulos, G.I., Liosatos, I.A., Moukanidis, A.K.: Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach. Phys. E 44, 124–134 (2011)

    Article  Google Scholar 

  52. Gillis, P.P.: Calculating the elastic constants of graphite. Carbon 22(4–5), 387–391 (1984)

    Article  Google Scholar 

  53. Girifalco, L.A., Hodak, M., Lee, R.S.: Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000)

    Article  Google Scholar 

  54. Glukhova, O.E.: Mechanical properties of graphene sheets. In: Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L. (eds.) Graphene Science Handbook: Mechanical and Chemical Properties, pp. 61–78. CRC Press, Taylor and Francis Group, London (2016)

    Chapter  Google Scholar 

  55. Goldstein, R.V., Chentsov, A.V.: A discrete-continuous model of a nanotube. Mech. Solids 40(4), 45–59 (2005)

    Google Scholar 

  56. Goringe, C.M., Bowler, D.R., Hernández, E.: Tight-binding modelling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997)

    Article  Google Scholar 

  57. Gui, G., Li, J., Zhong, J.: Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B 78, 075435 (2008)

    Article  Google Scholar 

  58. Gupta, S.S., Batra, R.C.: Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J. Comput. Theor. Nanosci. 7, 2151–2164 (2010)

    Article  Google Scholar 

  59. Hajgató, B., Güryel, S., Dauphin, Y., Blairon, J.-M., Miltner, H.E., van Lier, G., de Proft, F., Geerlings, P.: Theoretical investigation of the intrinsic mechanical properties of single- and double-layer graphene. J. Phys. Chem. C 116, 22608–22618 (2012)

    Article  Google Scholar 

  60. Hartmann, M.A., Todt, M., Rammerstorfer, F.G., Fischer, F.D., Paris, O.: Elastic properties of graphene obtained by computational mechanical tests. EPL 103, 68004 (2013)

    Article  Google Scholar 

  61. Hernandez, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and \(\text{ B }_x\text{ C }_y\text{ N }_z\) composite nanotubes. Phys. Rev. Lett. 80(20), 4502–4505 (1998)

    Article  Google Scholar 

  62. Holec, D., Hartmann, M.A., Fischer, F.D., Rammerstorfer, F.G., Mayrhofer, P.H., Paris, O.: Curvature-induced excess surface energy of fullerenes: density functional theory and Monte Carlo simulations. Phys. Rev. B 81, 235403 (2010)

    Article  Google Scholar 

  63. Hollerer, S.: Buckling analysis of carbon nanotubes—a molecular mechanics approach using the finite element framework. Proc. Appl. Math. Mech. 11, 221–222 (2011)

    Article  Google Scholar 

  64. Hollerer, S., Celigoj, C.C.: Buckling analysis of carbon nanotubes by a mixed atomistic and continuum model. Comput. Mech. 51, 765–789 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  66. Kalosakas, G., Lathiotakis, N.N., Galiotis, C., Papagelis, K.: In-plane force fields and elastic properties of graphene. J. Appl. Phys. 113, 134307 (2013)

    Article  Google Scholar 

  67. Klintenberg, M., Lebegue, S., Ortiz, C., Sanyal, B., Fransson, J., Eriksson, O.: Evolving properties of two-dimensional materials: from graphene to graphite. J. Phys. Condens. Matter 21, 335502 (2009)

    Article  Google Scholar 

  68. Koenig, S.P., Boddeti, N.G., Dunn, M.L., Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)

    Article  Google Scholar 

  69. Konstantinova, E., Dantas, S.O., Barone, P.M.V.B.: Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B 74, 035417 (2006)

    Article  Google Scholar 

  70. Korobeinikov, S.N.: The numerical solution of nonlinear problems on deformation and buckling of atomic lattices. Int. J. Fract. 128(1), 315–323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  71. Korobeinikov, S.N., Bondarenko, M.I.: A material and geometrical nonlinear analysis of shells including large rotation increments. In: Désidéri, J.-A., et al. (eds.) umerical Methods in Engineering ’96 (Proceedings of the 2nd ECCOMAS Conference), pp. 754–762. Wiley, Chichester (1996)

    Google Scholar 

  72. Korobeinikov, S.N., Agapov, V.P., Bondarenko, M.I., Soldatkin, A.N.: The general purpose nonlinear finite element structural analysis program PIONER. In: Sendov, B., Lazarov, R., Dimov, I. (eds.) Proceedings of International Conference on Numerical Methods and Applications, pp. 228–233. Publishing House of the Bulgarian Academy of Science, Sofia (1989)

    Google Scholar 

  73. Korobeinikov, S.N., Alyokhin, V.V., Bondarenko, M.I.: Application of a finite element method for the solution of three dimensional contact problems. In: Papadrakakis, M., Topping, B.H.V. (eds.) Advances in Simulation and Interaction Techniques, pp. 165–175. Civil-Company Press, Edinburg (1994)

    Chapter  Google Scholar 

  74. Korobeynikov, S.N.: Nonlinear Strain Analysis of Solids. Sib. Div. Russ. Acad. Sci, Novosibirsk (2000) (in Russian)

  75. Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  76. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V.: Using stability analysis of discrete elastic systems to study the buckling of nanostructures. Arch. Mech. 64(4), 367–404 (2012)

    MathSciNet  MATH  Google Scholar 

  77. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: Application of the molecular mechanics method to simulation of buckling of single-walled carbon nanotubes. Eng. Fract. Mech. 130, 83–95 (2014)

    Article  Google Scholar 

  78. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V.: Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math. Mech. Solids 20(7), 836–870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. Koskinen, P., Kit, O.O.: Approximate modeling of spherical membranes. Phys. Rev. B 82, 235420 (2010)

    Article  Google Scholar 

  80. Koskinen, P., Mäkinen, V.: Density-functional tight-binding for beginners. Comput. Mater. Sci. 47, 237–253 (2009)

    Article  Google Scholar 

  81. Krivtsov, A.M., Morozov, N.F.: On mechanical characteristics of nanocrystals. Phys. Solid State 44(12), 2260–2265 (2002)

    Article  Google Scholar 

  82. Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: \(\text{ C }_2\text{ F }\), BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  83. Kumar, S., Hembram, K.P.S.S., Waghmare, U.V.: Intrinsic buckling strength of graphene: first-principles density functional theory calculations. Phys. Rev. B 82, 115411 (2010)

    Article  Google Scholar 

  84. Kurzin, V.B., Korobeinikov, S.N., Ryabchenko, V.P., Tkacheva, L.A.: Natural vibrations of a uniform cascade of hydraulic-turbine blades in a fluid. J. Appl. Mech. Tech. Phys. 38(2), 240–249 (1997)

    Article  Google Scholar 

  85. Kuzkin, V.A., Krivtsov, A.M.: Description for mechanical properties of graphene using particles with rotational degrees of freedom. Dokl. Phys. 56(10), 527–530 (2011)

    Article  Google Scholar 

  86. Le, M.-Q., Batra, R.C.: Single-edge crack growth in graphene sheets under tension. Comput. Mater. Sci. 69, 381–388 (2013)

    Article  Google Scholar 

  87. Lee, J.G.: Computational Materials Science: An Introduction, 2nd edn. CRC Press, Boca Raton (2017)

    Google Scholar 

  88. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  89. Lee, J.U., Yoon, D., Cheong, H.: Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett. 12, 4444–4448 (2012)

    Article  Google Scholar 

  90. Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  91. Li, H., Guo, W.: Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C–C bonds. J. Appl. Phys. 103, 103501 (2008)

    Article  Google Scholar 

  92. Lindahl, N., Midtvedt, D., Svensson, J., Nerushev, O.A., Lindvall, N., Isacsson, A., Campbell, E.E.B.: Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012)

    Article  Google Scholar 

  93. Liu, W.K., Karpov, E.G., Park, H.S.: Nano Mechanics and Materials: Theory, Multiscale Methods and Aplications. Wiley, Hoboken (2006)

    Book  Google Scholar 

  94. Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)

    Article  Google Scholar 

  95. Lu, Q., Huang, R.: Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 1(3), 443–467 (2009)

    Article  Google Scholar 

  96. Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002 (2009)

    Article  Google Scholar 

  97. Lucas, A.A., Lambin, A.A., Smalley, R.E.: On the energetics of tubular fullerenes. J. Phys. Chem. Solids 54(5), 587–593 (1993)

    Article  Google Scholar 

  98. Marenić, E., Ibrahimbegovic, A., Sorić, J., Guidault, P.A.: Homogenized elastic properties of graphene for small deformations. Materials 6, 3764–3782 (2013)

    Article  Google Scholar 

  99. Marianetti, C.A., Yevick, H.G.: Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010)

    Article  Google Scholar 

  100. Mayo, S.L., Olafson, B.D., Goddard III, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Article  Google Scholar 

  101. Memarian, F., Fereidoon, A., Ganji, M.D.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015)

    Article  Google Scholar 

  102. Michel, K.H., Verberck, B.: Theory of the elastic constants of graphite and graphene. Phys. Status Solidi B 245(10), 2177–2180 (2008)

    Article  Google Scholar 

  103. Mielke, S.L., Troya, D., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R.S., Schatz, G.C., Belytschko, T.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004)

    Article  Google Scholar 

  104. Mirnezhad, M., Modarresi, M., Ansari, R., Roknabadi, M.R.: Effect of temperature on Young’s modulus of graphene. J. Therm. Stresses 35, 913–920 (2012)

    Article  Google Scholar 

  105. Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)

    Article  Google Scholar 

  106. Muñoz, E., Singh, A.K., Ribas, M.A., Penev, E.S., Yakobson, B.I.: The ultimate diamond slab: graphane versus graphene. Diam. Relat. Mater. 19, 368–373 (2010)

    Article  Google Scholar 

  107. Nasdala, L., Ernst, G.: Development of a 4-node finite element for the computation of nano-structured materials. Comput. Mater. Sci. 33, 443–458 (2005)

    Article  Google Scholar 

  108. Nasdala, L., Kempe, A., Rolfes, R.: The molecular dynamic finite element method (MDFEM). CMC Comput. Mater. Contin. 19(1), 57–104 (2010)

    Google Scholar 

  109. Nasdala, L., Kempe, A., Rolfes, R.: Are finite elements appropriate for use in molecular dynamic simulations? Compos. Sci. Technol. 72, 989–1000 (2012)

    Article  Google Scholar 

  110. Nazemnezhad, R., Hosseini-Hashemi, S.: Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys. Lett. A 378, 3225–3232 (2014)

    Article  MathSciNet  Google Scholar 

  111. Nicklow, R., Wakabayashi, N., Smith, H.G.: Lattice dynamics of pyrolytic graphite. Phys. Rev. B 5(12), 4951–4962 (1972)

    Article  Google Scholar 

  112. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  113. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Article  Google Scholar 

  114. Ogata, S., Shibutani, Y.: Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys. Rev. B 68, 165409 (2003)

    Article  Google Scholar 

  115. Puigdollers, A.R., Alonso, G., Gamallo, P.: First-principles study of structural, elastic and electronic properties of \(\alpha \)-, \(\beta \)- and \(\gamma \)-graphyne. Carbon 96, 879–887 (2016)

    Article  Google Scholar 

  116. Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3), 864–870 (2006)

    Article  Google Scholar 

  117. Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)

    Article  Google Scholar 

  118. Sánchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejón, P.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59(19), 12678–12688 (1999)

    Article  Google Scholar 

  119. Shi, X., Peng, B., Pugno, N.M., Gao, H.: Stretch-induced softening of bending rigidity in graphene. Appl. Phys. Lett. 100, 191913 (2012)

    Article  Google Scholar 

  120. Suarez-Martinez, I., Grobert, N., Ewels, C.P.: Nomenclature of \(\text{ sp }^2\) carbon nanoforms. Carbon 50, 741–747 (2012)

    Article  Google Scholar 

  121. Tabarraei, A., Shadalou, S., Song, J.-H.: Mechanical properties of graphene nanoribbons with disordered edges. Comput. Mater. Sci. 96, 10–19 (2015)

    Article  Google Scholar 

  122. Topsakal, M., Cahangirov, S., Ciraci, S.: The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96, 091912 (2010)

    Article  Google Scholar 

  123. Tserpes, K.I., Papanikos, P.: Finite element modeling of the tensile behavior of carbon nanotubes, graphene and their composites. In: Tserpes, K.I., Silvestre, N. (eds.) Springer Series in Materials Science, vol. 188: Modeling of Carbon Nanotubes, Graphene and their Composites, pp. 303–329. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  124. van Lier, G., van Alsenoy, G., van Doren, V., Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181–185 (2000)

    Article  Google Scholar 

  125. Wackerfuß, J.: Molecular mechanics in the context of the finite element method. Int. J. Numer. Methods Eng. 77, 969–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  126. Walther, J.H., Jaffe, R., Halicioglu, T., Koumoutsakos, P.: Carbon nanotubes in water: structural characteristics and energetics. J. Phys. Chem. B 105, 9980–9987 (2001)

    Article  Google Scholar 

  127. Wang, R., Wang, S., Wu, X., Liang, X.: First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene. Phys. B 405, 3501–3506 (2010)

    Article  Google Scholar 

  128. Wei, X., Kysar, J.W.: Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int. J. Solids Struct. 49, 3201–3209 (2012)

    Article  Google Scholar 

  129. Wei, X., Fragneaud, B., Marianetti, C.A., Kysar, J.W.: Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80, 205407 (2009)

    Article  Google Scholar 

  130. Wei, D., Song, Y., Wang, F.: A simple molecular mechanics potential for \(\mu \text{ m }\) scale graphene simulations from the adaptive force matching method. J. Chem. Phys. 134, 184704 (2011)

    Article  Google Scholar 

  131. Wei, Y., Wang, B., Wu, J., Yang, R., Dunn, M.L.: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13(1), 26–30 (2013)

    Article  Google Scholar 

  132. Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)

    Article  MATH  Google Scholar 

  133. Xu, M., Paci, J.T., Oswald, J., Belytschko, T.: A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 49, 2582–2589 (2012)

    Article  Google Scholar 

  134. Yue, Q., Chang, S., Kang, J., Qin, S., Li, J.: Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions. J. Phys. Chem. C 117(28), 14804–14811 (2013)

    Article  Google Scholar 

  135. Zhang, Y., Pan, C.: Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam. Relat. Mater. 24, 1–5 (2012)

    Article  Google Scholar 

  136. Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893–3906 (2002)

    Article  MATH  Google Scholar 

  137. Zhang, D.-B., Akatyeva, E., Dumitrică, T.: Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett. 106, 255503 (2011)

    Article  Google Scholar 

  138. Zhao, J., Wang, L., Jiang, J.-W., Wang, Z., Guo, W., Rabczuk, T.: A comparative study of two molecular mechanics models based on harmonic potentials. J. Appl. Phys. 113, 063509 (2013)

    Article  Google Scholar 

  139. Zhou, J., Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 56, 1609–1623 (2008)

    Article  MATH  Google Scholar 

  140. Zhou, G., Duan, W., Gu, B.: First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem. Phys. Lett. 333, 344–349 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The supports from the Russian Foundation for Basic Research (Grant No. 15-08-01635) and from Russian Federation Government (Grant No. P220-14.W03.31.0002) are gratefully acknowledged. The authors thank the anonymous reviewers whose comments and suggestions helped in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Korobeynikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeynikov, S.N., Alyokhin, V.V. & Babichev, A.V. Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech 229, 2343–2378 (2018). https://doi.org/10.1007/s00707-018-2115-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2115-5

Mathematics Subject Classification

Navigation