Skip to main content
Log in

Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Delamination is a well-known defect mode that can arise in the manufacturing process of laminated composite plates. Due to the importance of analyzing the destructive effects of delamination on the mechanical behavior of composite plates, the flexural analysis of circular laminated composite plates with circular delamination is presented here. The governing equilibrium equations of laminated plates are first determined using third-order shear deformation theory. Both the linear and geometrically nonlinear strain states are considered, and the variational approach with a moving boundary is employed to derive the equilibrium equations. The governing equations in terms of the displacement field are then solved using the Galerkin method and the spectral homotopy analysis method to obtain the linear and nonlinear strain states, respectively. The effect of the variations of the elastic material properties on the strain energy release rate is also comprehensively studied. The results of the present study are consistent with the results of other methods found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohammadi, B., Shahabi, F.: On computational modeling of postbuckling behavior of composite laminates containing single and multiple through-the-width delaminations using interface elements with cohesive law. Eng. Fract. Mech. 152, 88–104 (2016). https://doi.org/10.1016/j.engfracmech.2015.04.005

    Article  Google Scholar 

  2. Baek, H.M., Hwang, S.K., Joo, H.S., Im, Y.-T., Son, I.-H., Bae, C.M.: The effect of a non-circular drawing sequence on delamination characteristics of pearlitic steel wire (1980–2015). Mater. Des. 62, 137–148 (2014). https://doi.org/10.1016/j.matdes.2014.05.014

    Article  Google Scholar 

  3. Guruprasad, P.J., Thejasvi, M., Harursampath, D.: Nonlinear analysis of a thin pre-twisted and delaminated anisotropic strip. Acta Mech. 225(10), 2815–2832 (2014). https://doi.org/10.1007/s00707-014-1203-4

    Article  Google Scholar 

  4. Nanda, N.: Static analysis of delaminated composite shell panels using layerwise theory. Acta Mech. 225(10), 2893–2901 (2014). https://doi.org/10.1007/s00707-014-1200-7

    Article  MATH  Google Scholar 

  5. Gaitonde, V.N., Karnik, S.R., Rubio, J.C., Correia, A.E., Abro, A.M., Davim, J.P.: Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J. Mater. Process. Technol. 203(13), 431–438 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.050

    Article  Google Scholar 

  6. Li, D., Tang, G., Zhou, J., Lei, Y.: Buckling analysis of a plate with built-in rectangular delamination by strip distributed transfer function method. Acta Mech. 176(3), 231–243 (2005). https://doi.org/10.1007/s00707-004-0206-y

    Article  MATH  Google Scholar 

  7. Carreras, L., Renart, J., Turon, A., Costa, J., Essa, Y., Martin de la Escalera, F.: An efficient methodology for the experimental characterization of mode II delamination growth under fatigue loading. Int. J. Fatigue 95, 185–193 (2017). https://doi.org/10.1016/j.ijfatigue.2016.10.017

    Article  Google Scholar 

  8. Hammami, M., El Mahi, A., Karra, C., Haddar, M.: Experimental analysis of the linear and nonlinear behaviour of composites with delaminations. Appl. Acoust. 108, 31–39 (2016). https://doi.org/10.1016/j.apacoust.2015.10.026

    Article  Google Scholar 

  9. Gong, W., Chen, J., Patterson, E.A.: Buckling and delamination growth behaviour of delaminated composite panels subject to four-point bending. Compos. Struct. 138, 122–133 (2016). https://doi.org/10.1016/j.compstruct.2015.11.054

    Article  Google Scholar 

  10. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mech. 225(7), 2075 (2014). https://doi.org/10.1007/s00707-013-1085-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. 224(12), 2955–2964 (2013). https://doi.org/10.1007/s00707-013-0912-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Barretta, R.: On Cesro–Volterra method in orthotropic Saint-Venant beam. J. Elast. 112(2), 233–253 (2013). https://doi.org/10.1007/s10659-013-9432-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Xie, J., Waas, A.M., Rassaian, M.: Closed-form solutions for cohesive zone modeling of delamination toughness tests. Int. J. Solids Struct. 8889, 379–400 (2016). https://doi.org/10.1016/j.ijsolstr.2015.12.025

    Article  Google Scholar 

  14. Forschelen, P.J.J., Suiker, A.S.J., van der Sluis, O.: Effect of residual stress on the delamination response of film-substrate systems under bending. Int. J. Solids Struct. 9798, 284–299 (2016). https://doi.org/10.1016/j.ijsolstr.2016.07.020

    Article  Google Scholar 

  15. Benvenuti, E., Orlando, N., Ferretti, D., Tralli, A.: A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete. Compos. Part B Eng. 91, 346–360 (2016). https://doi.org/10.1016/j.compositesb.2016.01.024

    Article  Google Scholar 

  16. Saeedi, N., Sab, K., Caron, J.-F.: Cylindrical bending of multilayered plates with multi-delamination via a layerwise stress approach. Compos. Struct. 95, 728–739 (2013). https://doi.org/10.1016/j.compstruct.2012.08.037

    Article  Google Scholar 

  17. Ullah, H., Harland, A.R., Lucas, T., Price, D., Silberschmidt, V.V.: Finite-element modelling of bending of CFRP laminates: multiple delaminations. Comput. Mater. Sci. 52(1), 147–156 (2012). https://doi.org/10.1016/j.commatsci.2011.02.005

    Article  Google Scholar 

  18. Guenanou, A., Houmat, A.: Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method. Eng. Optim. (2017). https://doi.org/10.1080/0305215X.2017.1347924

  19. Chau-Dinh, T., Nguyen-Duy, Q., Nguyen-Xuan, H.: Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis. Acta Mech. 228(6), 2141–2163 (2017). https://doi.org/10.1007/s00707-017-1818-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Yazdani, S., Rust, W.J.H., Wriggers, P.: An XFEM approach for modelling delamination in composite laminates. Compos. Struct. 135, 353–364 (2016). https://doi.org/10.1016/j.compstruct.2015.09.035

    Article  Google Scholar 

  21. Nikrad, S.F., Keypoursangsari, S., Asadi, H., Akbarzadeh, A.H., Chen, Z.T.: Computational study on compressive instability of composite plates with off-center delaminations. Comput. Methods Appl. Mech. Eng. 310, 429–459 (2016). https://doi.org/10.1016/j.cma.2016.07.021

    Article  MathSciNet  Google Scholar 

  22. Ovesy, H.R., Asghari Mooneghi, M., Kharazi, M.: Post-buckling analysis of delaminated composite laminates with multiple through-the-width delaminations using a novel layerwise theory. Thin Walled Struct. 94, 98–106 (2015). https://doi.org/10.1016/j.tws.2015.03.028

    Article  Google Scholar 

  23. Gupta, A.K., Patel, B.P., Nath, Y.: Nonlinear static analysis of composite laminated plates with evolving damage. Acta Mech. 224(6), 1285–1298 (2013). https://doi.org/10.1007/s00707-013-0875-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Houmat, A.: Large amplitude free vibration of a shear deformable laminated composite parabolic plate with parabolically orthotropic plies. Acta Mech. 223(1), 145–160 (2012). https://doi.org/10.1007/s00707-011-0550-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Ovesy, H.R., Kharazi, M.: Compressional stability behavior of composite plates with through-the-width and embedded delaminations by using first order shear deformation theory. Comput. Struct. 89(1920), 1829–1839 (2011). https://doi.org/10.1016/j.compstruc.2010.016

    Article  Google Scholar 

  26. Kharazi, M., Ovesy, H.R., Taghizadeh, M.: Buckling of the composite laminates containing through-the-width delaminations using different plate theories. Compos. Struct. 92(5), 1176–1183 (2010). https://doi.org/10.1016/j.compstruct.2009.10.019

    Article  Google Scholar 

  27. Belalia, S., Houmat, A.: Non-linear free vibration of elliptic sector plates by a curved triangular p-element. Thin Walled Struct. 48(4), 316–326 (2010). https://doi.org/10.1016/j.tws.2009.12.001

    Article  MATH  Google Scholar 

  28. Houmat, A.: Nonlinear free vibration of a shear deformable laminated composite annular elliptical plate. Acta Mech. 208(3), 281 (2009). https://doi.org/10.1007/s00707-009-0148-5

    Article  MATH  Google Scholar 

  29. Nosier, A., Yavari, A., Sarkani, S.: A study of the edge-zone equation of Mindlin-Reissner plate theory in bending of laminated rectangular plates. Acta Mech. 146(3), 227–238 (2001). https://doi.org/10.1007/BF01246734

    Article  MATH  Google Scholar 

  30. Chen, D., Dai, L.: Delamination growth of laminated circular plates under in-plane loads and movable boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3238–3249 (2013). https://doi.org/10.1016/j.cnsns.2013.03.009

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, D., Chen, C., Fu, Y., Dai, L.: Growth of delamination for laminates circular plates subjected to transverse loads. In: Luo, A., American Society of Mechanical Engineers (eds.) ASME 2009 International Mechanical Engineering Congress and Exposition 2009, pp. 597–605. American Society of Mechanical Engineers, New York. https://doi.org/10.1115/IMECE2009-10687

  32. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

  33. Ali Faghidian, S.: Unified formulations of the shear coefficients in Timoshenko beam theory. J. Eng. Mech. 143(9), 06017013 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297

    Article  Google Scholar 

  34. Thai, C.H., Ferreira, A.J.M., Abdel Wahab, M., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227(5), 1225–1250 (2016). https://doi.org/10.1007/s00707-015-1547-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Y., Zhu, J.: Vibration and bending analysis of multiferroic rectangular plates using third-order shear deformation theory. Compos. Struct. 153, 712–723 (2016). https://doi.org/10.1016/j.compstruct.2016.06.064

    Article  Google Scholar 

  36. Saidi, A.R., Rasouli, A., Sahraee, S.: Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos. Struct. 89(1), 110–119 (2009). https://doi.org/10.1016/j.compstruct.2008.07.003

    Article  Google Scholar 

  37. Aghababaei, R., Reddy, J.N.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326(12), 277–289 (2009). https://doi.org/10.1016/j.jsv.2009.04.044

    Article  Google Scholar 

  38. Szekrnyes, A.: Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory. Appl. Math. Model. 38(1516), 3897–3916 (2014). https://doi.org/10.1016/j.apm.2013.11.064

    Article  MathSciNet  Google Scholar 

  39. Szekrnyes, A.: Semi-layerwise analysis of laminated plates with nonsingular delamination—the theorem of autocontinuity. Appl. Math. Model. 40(2), 1344–1371 (2016). https://doi.org/10.1016/j.apm.2015.06.037

    Article  MathSciNet  Google Scholar 

  40. Li, D.H.: Delamination and transverse crack growth prediction for laminated composite plates and shells. Comput. Struct. 177, 39–55 (2016). https://doi.org/10.1016/j.compstruc.2016.07.011

    Article  Google Scholar 

  41. Yamanaka, T., Heidari-Rarani, M., Lessard, L., Feret, V., Hubert, P.: A new finite element method for modeling delamination propagation without additional degrees of freedom. Compos. Struct. 147, 82–98 (2016). https://doi.org/10.1016/j.compstruct.2016.03.040

    Article  Google Scholar 

  42. Xie, D., Biggers, S.B.: Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: formulation and validation. Eng. Fract. Mech. 73(6), 771–785 (2006). https://doi.org/10.1016/j.engfracmech.2005.07.013

    Article  Google Scholar 

  43. Yao, L., Alderliesten, R.C., Zhao, M., Benedictus, R.: Discussion on the use of the strain energy release rate for fatigue delamination characterization. Compos. Part A Appl. Sci. Manuf. 66, 65–72 (2014). https://doi.org/10.1016/j.compositesa.2014.06.018

    Article  Google Scholar 

  44. Khan, R., Alderliesten, R., Benedictus, R.: Two-parameter model for delamination growth under mode I fatigue loading (part B: model development). Compos. Part A Appl. Sci. Manuf. 65, 201–210 (2014). https://doi.org/10.1016/j.compositesa.2014.06.008

    Article  Google Scholar 

  45. Wei, P.J., Chio, S.B., Liang, W.L., Lin, J.F.: Determining buckling strain energy release rate through indentation-induced delamination. Thin Solid Films 519(15), 4889–4893 (2011). https://doi.org/10.1016/j.tsf.2011.01.048

    Article  Google Scholar 

  46. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  47. Wang, J., Tong, L.: A study of the vibration of delaminated beams using a nonlinear anti-interpenetration constraint model. Compos. Struct. 57(1), 483–488 (2002). https://doi.org/10.1016/S0263-8223(02)00117-4

    Article  Google Scholar 

  48. Elsgolc, L.D.: Dover Publications. Dover Publications, New York (2007)

    Google Scholar 

  49. Maamar, D.B., Zenasni, R.: Effect of weaving type on damage behaviour of carbon/epoxy laminate under low velocity impact loading. Period. Polytech. Mech. Eng. 61(2), 140–145 (2017)

    Article  Google Scholar 

  50. Kuhtz, M., Hornig, A., Gude, M., Jger, H.: A method to control delaminations in composites for adjusted energy dissipation characteristics. Mater. Des. 123, 103–111 (2017). https://doi.org/10.1016/j.matdes.2017.03.003

    Article  Google Scholar 

  51. Kllner, A., Jungnickel, R., Vllmecke, C.: Delamination growth in buckled composite struts. Int. J. Fract. 202(2), 261–269 (2016). https://doi.org/10.1007/s10704-016-0158-y

    Article  Google Scholar 

  52. Fuhui, Z., Yiming, F., Deliang, C.: Analysis of fatigue delamination growth for piezoelectric laminated cylindrical shell considering nonlinear contact effect. Int. J. Solids Struct. 45(20), 5381–5396 (2008). https://doi.org/10.1016/j.ijsolstr.2008.05.031

    Article  MATH  Google Scholar 

  53. Anderson, T.L., Anderson, T.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  54. Beigzadeh, B., Rasaeifard, A.: Homotopy-based solution of Navier–Stokes equations for two-phase flow during magnetic drug targeting. J. Mol. Liquids 238, 11–18 (2017). https://doi.org/10.1016/j.molliq.2017.04.106

    Article  Google Scholar 

  55. Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017). https://doi.org/10.1016/j.apm.2016.12.008

    Article  MathSciNet  Google Scholar 

  56. Jiang, C., Han, S., Ji, M., Han, X.: A new method to solve the structural reliability index based on homotopy analysis. Acta Mech. 226(4), 1067–1083 (2015). https://doi.org/10.1007/s00707-014-1226-x

    Article  MathSciNet  Google Scholar 

  57. Qian, L.H., Qian, Y.H., Chen, S.M.: Homotopy analysis method for homoclinic orbit of a buckled thin plate system. Acta Mech. 225(2), 373–381 (2014). https://doi.org/10.1007/s00707-013-0965-4

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, W., Qian, Y.H., Lai, S.K.: Extended homotopy analysis method for multi-degree-of-freedom non-autonomous nonlinear dynamical systems and its application. Acta Mech. 223(12), 2537–2548 (2012). https://doi.org/10.1007/s00707-012-0725-x

    Article  MathSciNet  MATH  Google Scholar 

  59. Kargarnovin, M., Faghidian, S., Farjami, Y., Farrahi, G.: Application of homotopy-Pad technique in limit analysis of circular plates under arbitrary rotational symmetric loading using von-Mises yield criterion. Commun. Nonlinear Sci. Numer. Simul. 15(4), 1080–1091 (2010). https://doi.org/10.1016/j.cnsns.2009.05.030

    Article  MathSciNet  MATH  Google Scholar 

  60. Liao, S.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14(4), 983–997 (2009). https://doi.org/10.1016/j.cnsns.2008.04.013

    Article  MathSciNet  MATH  Google Scholar 

  61. Liao, S.: Advances in the Homotopy Analysis Method. World Scientific, Singapore (2013)

    Google Scholar 

  62. Motsa, S., Sibanda, P., Shateyi, S.: A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2293–2302 (2010). https://doi.org/10.1016/j.cnsns.2009.09.019

    Article  MathSciNet  MATH  Google Scholar 

  63. Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  64. Motsa, S., Sibanda, P., Awad, F., Shateyi, S.: A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem. Comput. Fluids 39(7), 1219–1225 (2010). https://doi.org/10.1016/j.compfluid.2010.03.004

    Article  MathSciNet  MATH  Google Scholar 

  65. Lin, C.-H.: Design of a composite recurrent Laguerre orthogonal polynomial neural network control system with ameliorated particle swarm optimization for a continuously variable transmission system. Control Eng. Pract. 49, 42–59 (2016). https://doi.org/10.1016/j.conengprac.2016.02.001

    Article  Google Scholar 

  66. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, New York (2002)

    Google Scholar 

  67. Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  68. Fatemi, S., Ali, M.M., Sheikh, A.: Load distribution for composite steel concrete horizontally curved box girder bridge. J. Constr. Steel Res. 116, 19–28 (2016). https://doi.org/10.1016/j.jcsr.2015.08.042

    Article  Google Scholar 

  69. Liu, R.-H., Xu, J.-C., Zhai, S.-Z.: Large-deflection bending of symmetrically laminated rectilinearly orthotropic elliptical plates including transverse shear. Arch. Appl. Mech. 67(7), 507–520 (1997). https://doi.org/10.1007/s004190050135

    Article  MATH  Google Scholar 

  70. Chien, W.-Z.: Large deflection of a circular clamped plate under uniform pressure. Acta Phys. Sin. 7 (2), 102–107 (1947). https://doi.org/10.7498/aps.7.102. http://wulixb.iphy.ac.cn/EN/abstract/abstract71.shtml

  71. Nosier, A., Yavari, A., Sarkani, S.: On a boundary layer phenomenon in Mindlin-Reissner plate theory for laminated circular sector plates. Acta Mech. 151(3–4), 149–161 (2001). https://doi.org/10.1007/BF01246914

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Faghidian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghani, A., Mondali, M. & Faghidian, S.A. Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination. Acta Mech 229, 1631–1648 (2018). https://doi.org/10.1007/s00707-017-2072-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2072-4

Navigation