Skip to main content
Log in

An I-integral method for the crack-tip intensity factor in ferromagnetic materials with domain switching

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An I-integral method is developed to calculate the crack-tip stress intensity factors (SIFs) in the ferromagnetic thin plate subjected to the external loads. The value of I-integral is not affected by the integral area size, the magnetization distributions or domain walls, which shows the applicability to the large-scale domain switching. Based on the stress and magnetic field obtained from phase-field simulations, the I-integral method is successfully employed to obtain the crack-tip intensity factors and decouples different modes of the crack-tip intensity factors in ferromagnetic thin plates with an impermeable edge crack under different mechanical and/or magnetic loadings. The influence of domain switching on the SIFs is investigated for different loadings. It is found that domain switching under a constant stress loading increases the crack-tip intensity factors, whereas domain switching decreases the crack-tip intensity factors under a constant strain loading. The results indicate that the domain switching-induced shielding or anti-shielding of a crack in ferromagnetic materials with an impermeable edge crack is dependent on the loading condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andriamandroso, D., Demazeau, G., Pouchard, M., et al.: New ferromagnetic materials for magnetic recording: the iron carbonitrides. J. Solid State Chem. 54, 54–60 (1984)

    Article  Google Scholar 

  2. Nakano, K., Chiba, D., Ohshima, N.: All-electrical operation of magnetic vortex core memory cell. Appl. Phys. Lett. 99(3), 262505–262505 (2011)

    Article  Google Scholar 

  3. Park, S.I., Min, S.: Design of magnetic actuator with nonlinear ferromagnetic materials using level-set based topology optimization. IEEE Trans. Magn. 46, 618–621 (2010)

    Article  Google Scholar 

  4. Shindo, Y., Sekiya, D., Narita, F., et al.: Tensile testing and analysis of ferromagnetic elastic strip with a central crack in a uniform magnetic field. Acta Mater. 52, 4677–4684 (2004)

    Article  Google Scholar 

  5. Wang, H.-P., Dong, L.-H., Dong, S.-Y., et al.: Fatigue damage evaluation by metal magnetic memory testing. J. Cent. S. Univ. 21, 65–70 (2014)

    Article  Google Scholar 

  6. Xiong, F., Liu, Y.: Effect of stress-induced martensitic transformation on the crack tip stress-intensity factor in Ni–Mn–Ga shape memory alloy. Acta Mater. 55, 5621–5629 (2007)

    Article  Google Scholar 

  7. Wan, Y.P., Fang, D.N., Soh, A.K., et al.: Effect of magnetostriction on fracture of a soft ferromagnetic medium with a crack-like flaw. Fatigue Fract. Eng. Mater. Struct. 26, 1091–1102 (2003)

    Article  Google Scholar 

  8. Yoshimura, K., Shindo, Y., Horiguchi, K., et al.: Theoretical and experimental determination of magnetic stress intensity factors of a crack in a double cantilever beam specimen. Fatigue Fract. Eng. Mater. Struct. 27, 213–218 (2004)

    Article  Google Scholar 

  9. Chen, X.: Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. J. Appl. Mech. 76, 041016 (2009)

    Article  Google Scholar 

  10. Fang, D., Wan, Y., Feng, X., et al.: Deformation and fracture of functional ferromagnetics. Appl. Mech. Rev. 61, 020803 (2008)

    Article  MATH  Google Scholar 

  11. Fang, D.N., Wan, Y.P., Soh, A.K.: Magnetoelastic fracture of soft ferromagnetic materials. Theoret. Appl. Fract. Mech. 42, 317–334 (2004)

    Article  Google Scholar 

  12. Shindo, Y.: The linear magnetoelastic problem for a soft ferromagnetic elastic solid with a finite crack. J. Appl. Mech. 44, 47–51 (1977)

    Article  MATH  Google Scholar 

  13. Zhao, M.H., Fan, C.Y.: Strip electric-magnetic breakdown model in magnetoelectroelastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)

    Article  MATH  Google Scholar 

  14. Soh, A.K., Fang, D.N., Wan, Y.P.: A small-scale magnetic-yielding model for an infinite magnetostrictive plane with a crack-like flaw. Int. J. Solids Struct. 41, 6129–6146 (2004)

    Article  MATH  Google Scholar 

  15. Schrefl, T., Fidler, J.: Numerical micromagnetics in hard magnetic and multilayer systems (invited). J. Appl. Phys. 79, 6458–6463 (1996)

    Article  Google Scholar 

  16. Williams, W., Dunlop, D.J.: Three-dimensional micromagnetic modelling of ferromagnetic domain structure. Nature 337, 634–637 (1989)

    Article  Google Scholar 

  17. Chunsheng, E., Rantschler, J.O., Khizroev, S., et al.: Micromagnetic study of domain wall dynamics in bit-patterned nanodots. J. Appl. Phys. 103, 113910–113910-5 (2008)

    Article  Google Scholar 

  18. Shir, C.C.: Computations of the micromagnetic dynamics in domain walls. J. Appl. Phys. 49, 1841–1843 (1978)

    Article  Google Scholar 

  19. Bhargava, R.R., Sharma, K.: A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method. Comput. Mater. Sci. 50, 1834–1845 (2011)

    Article  Google Scholar 

  20. Yu, H., Wu, L., Guo, L., et al.: Interaction integral method for the interfacial fracture problems of two nonhomogeneous materials. Mech. Mater. 42, 435–450 (2010)

    Article  Google Scholar 

  21. Li, W., Landis, C.M.: Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng. Fract. Mech. 78, 1505–1513 (2011)

    Article  Google Scholar 

  22. Yu, H., Wang, J., Shimada, T., et al.: An I-integral method for crack-tip intensity factor variation due to domain switching in ferroelectric single-crystals. J. Mech. Phys. Solids 94, 207–229 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yu, H., Wu, L., Li, H.: A domain-independent interaction integral for magneto-electro-elastic materials. Int. J. Solids Struct. 51, 336–351 (2014)

    Article  Google Scholar 

  24. Wang, J., Zhang, J.: A real-space phase field model for the domain evolution of ferromagnetic materials. Int. J. Solids Struct. 50, 3597–3609 (2013)

    Article  Google Scholar 

  25. Wang, J., Zhang, J., Shimada, T., et al.: Effect of strain on the evolution of magnetic multi-vortices in ferromagnetic nano-platelets. J. Phys. Condens. Matter 25, 226002–226002 (2013)

    Article  Google Scholar 

  26. Landis, C.M.: A continuum thermodynamics formulation for micro-magneto-mechanics with applications to ferromagnetic shape memory alloys. J. Mech. Phys. Solids 56, 3059–3076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, B.L., Mai, Y.W.: Crack tip field in piezoelectric/piezomagnetic media. Eur. J. Mech. A. Solids 22, 591–602 (2003)

    Article  MATH  Google Scholar 

  28. Suo, Z., Kuo, C.M., Barnett, D.M., et al.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ricoeur, A., Kuna, M.: Influence of electric fields on the fracture of ferroelectric ceramics. J. Eur. Ceram. Soc. 23, 1313–1328 (2003)

    Article  Google Scholar 

  30. Heyer, V., Schneider, G.A., Balke, H., et al.: A fracture criterion for conducting cracks in homogeneously poled piezoelectric PZT-PIC 151 ceramics. Acta Mater. 46, 6615–6622 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yu, H. & Wang, J. An I-integral method for the crack-tip intensity factor in ferromagnetic materials with domain switching. Acta Mech 230, 1427–1439 (2019). https://doi.org/10.1007/s00707-017-2016-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2016-z

Navigation